An EM approach to mineral analysis using natural gamma rays

B. Moran, Du Huynh, X. Wang, M. Edwards, A. Harris, B.F. La Scala

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)


    We describe here a method for the analysis of materials on a conveyor belt using the natural gamma spectra collected with a BGO (Bismuth Germanate) gamma ray detector. This detector collects gamma ray emissions from the Potassium (K), Uranium (U), and Thorium (Th) atoms in the materials. Based on these data, and using a Poisson model for the data generation, a statistical model is proposed and an approximate maximum likelihood (ML) technique based on the expectation-maximization (EM) algorithm is then used to estimate the amount of each of the three elements in the material. The statistical model is further refined to incorporate parameters of drift in the detector and an estimation technique for this is developed and tested against real data. The Cramér–Rao lower bounds for the estimators are calculated.
    Original languageEnglish
    Pages (from-to)793-808
    JournalDigital Signal Processing
    Issue number5
    Publication statusPublished - 2009


    Dive into the research topics of 'An EM approach to mineral analysis using natural gamma rays'. Together they form a unique fingerprint.

    Cite this