Projects per year
Abstract
Steel catenary risers (SCRs) are an efficient solution to transfer hydrocarbons from deep-water seabeds to floating facilities. SCR design requires an assessment of the fatigue life in the touchdown zone, where the riser interacts with the seabed, which relies on reliable estimates of the SCR-seabed stiffness over the design life. Current models for SCR-seabed stiffness consider only undrained conditions, neglecting the development and dissipation of excess pore pressures that occur over the life of the SCR. This consolidation process alters the seabed strength and consequently the SCR-seabed stiffness. This paper summarises experimental data that show that long-term cyclic vertical motion of an SCR at the touchdown zone leads to a reduction in seabed strength due to remoulding and water entrainment, but that this degradation is eclipsed by the regain in soil strength during consolidation. The main focus of this paper is on prediction of the temporal changes in seabed strength and stiffness due to long-term cyclic shearing and consolidation, to support calculations of SCR-seabed interaction. The predictions are obtained using a framework that considers the change in effective stress and hence soil strength using critical state concepts, and that considers the soil domain as a one-dimensional column of elements. The merit of the model is assessed by way of simulations of SCR centrifuge model tests with over 3000 cycles of repeated undrained vertical cycles in normally consolidated kaolin clay. Comparisons of the simulated and measured profiles of SCR penetration resistance reveal that the model can capture accurately the observed changes in SCR-seabed stiffness. Example simulations show the merit of the model as a tool to assess the timescale in field conditions over which this order of magnitude change in seabed stiffness occurs. It is concluded that current design practice may underestimate the seabed stiffness significantly, but the new approach allows rapid checking of this for particular combinations of SCR and soil conditions.
Original language | English |
---|---|
Pages (from-to) | 448-467 |
Number of pages | 20 |
Journal | Geotechnique |
Volume | 70 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2020 |
Fingerprint
Dive into the research topics of 'An effective stress analysis for predicting the evolution of SCR-seabed stiffness accounting for consolidation'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ARC ITRH for Offshore Floating Facilities
Watson, P. (Investigator 01), Cassidy, M. (Investigator 02), Efthymiou, M. (Investigator 03), Ivey, G. (Investigator 04), Jones, N. (Investigator 05), Cheng, L. (Investigator 06), Draper, S. (Investigator 07), Zhao, M. (Investigator 08), Randolph, M. (Investigator 09), Gaudin, C. (Investigator 10), O'Loughlin, C. (Investigator 11), Hodkiewicz, M. (Investigator 12), Cripps, E. (Investigator 13), Zhao, W. (Investigator 14), Wolgamot, H. (Investigator 15), White, D. (Investigator 16), Doherty, J. (Investigator 17), Taylor, P. (Investigator 18), Stanier, S. (Investigator 19) & Gourvenec, S. (Investigator 20)
ARC Australian Research Council
1/01/14 → 30/12/22
Project: Research