An analysis of the foot in turnout using a dance specific 3D multi-segment foot model

Sarah Carter, Alan Bryant, Luke Stephen Hopper

Research output: Contribution to journalArticle

Abstract

Introduction: Recent three-dimensional (3D) kinematic research has revealed foot abduction is the strongest predictor of standing functional and forced turnout postures. However, it is still unknown how the internal foot joints enable a large degree of foot abduction in turnout. The primary purpose of this study was to use a dance specific multi-segment foot model to determine the lower leg and foot contributions to turnout that female university-level ballets use to accentuate their turnout. Methods: Eighteen female dance students (mean age, 18.8 ± 1.6 years) volunteered for this study. Retro-reflective markers were attached to the dancers' dominant foot. Each dancer performed three repetitions of functional turnout, forced turnout and ten consecutive sautés in first position. Repeated measures ANOVA with Bonferroni adjustments for the multiple comparisons were used to determine the kinematic adjustments, hindfoot eversion, midfoot and forefoot abduction, navicular drop (i.e. lowering of the medial longitudinal arch) and first metatarsophalangeal joint abduction between natural double leg up-right posture and the first position conditions. Results: Hindfoot eversion (4.6°, p < 0.001) and midfoot abduction (2.8°, p < 0.001) significantly increased in functional turnout compared to the natural double leg up-right posture. Thirteen dancers demonstrated increased first metatarsophalangeal joint (MTPJ) abduction in forced turnout, however no statistically significant increase was found. Navicular drop during sautés in first position significantly increased by 11 mm (p < 0.001) compared to the natural double leg up-right posture. Conclusion: Our findings suggest dancers do pronate, via hindfoot eversion and midfoot abduction in both functional and forced turnout, however, no immediate association was found between forced turnout and first MTPJ abduction. Foot pronation does play a role in achieving turnout. Further prospective research on in situ measures of the lower limb in turnout and injury surveillance is required to improve our understanding of the normal and abnormal dance biomechanics. © 2019 The Author(s).
Original languageEnglish
Number of pages11
JournalJournal of Foot and Ankle Research
Volume12
Issue number10
DOIs
Publication statusPublished - 4 Feb 2019

Fingerprint

Dancing
Foot
Metatarsophalangeal Joint
Posture
Leg
Biomechanical Phenomena
Foot Joints
Pronation
Research
Lower Extremity
Analysis of Variance
Students
Wounds and Injuries

Cite this

@article{7b5ff864c5064b3c852b7aa10358916a,
title = "An analysis of the foot in turnout using a dance specific 3D multi-segment foot model",
abstract = "Introduction: Recent three-dimensional (3D) kinematic research has revealed foot abduction is the strongest predictor of standing functional and forced turnout postures. However, it is still unknown how the internal foot joints enable a large degree of foot abduction in turnout. The primary purpose of this study was to use a dance specific multi-segment foot model to determine the lower leg and foot contributions to turnout that female university-level ballets use to accentuate their turnout. Methods: Eighteen female dance students (mean age, 18.8 ± 1.6 years) volunteered for this study. Retro-reflective markers were attached to the dancers' dominant foot. Each dancer performed three repetitions of functional turnout, forced turnout and ten consecutive saut{\'e}s in first position. Repeated measures ANOVA with Bonferroni adjustments for the multiple comparisons were used to determine the kinematic adjustments, hindfoot eversion, midfoot and forefoot abduction, navicular drop (i.e. lowering of the medial longitudinal arch) and first metatarsophalangeal joint abduction between natural double leg up-right posture and the first position conditions. Results: Hindfoot eversion (4.6°, p < 0.001) and midfoot abduction (2.8°, p < 0.001) significantly increased in functional turnout compared to the natural double leg up-right posture. Thirteen dancers demonstrated increased first metatarsophalangeal joint (MTPJ) abduction in forced turnout, however no statistically significant increase was found. Navicular drop during saut{\'e}s in first position significantly increased by 11 mm (p < 0.001) compared to the natural double leg up-right posture. Conclusion: Our findings suggest dancers do pronate, via hindfoot eversion and midfoot abduction in both functional and forced turnout, however, no immediate association was found between forced turnout and first MTPJ abduction. Foot pronation does play a role in achieving turnout. Further prospective research on in situ measures of the lower limb in turnout and injury surveillance is required to improve our understanding of the normal and abnormal dance biomechanics. {\circledC} 2019 The Author(s).",
keywords = "Ballet, three-dimensional, Hallux valgus, Kinematics, Saut{\'e}s",
author = "Sarah Carter and Alan Bryant and Hopper, {Luke Stephen}",
year = "2019",
month = "2",
day = "4",
doi = "10.1186/s13047-019-0318-1",
language = "English",
volume = "12",
journal = "Journal of Foot and Ankle Research",
issn = "1757-1146",
publisher = "BMC Proceedings",
number = "10",

}

An analysis of the foot in turnout using a dance specific 3D multi-segment foot model. / Carter, Sarah; Bryant, Alan; Hopper, Luke Stephen.

In: Journal of Foot and Ankle Research, Vol. 12, No. 10, 04.02.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - An analysis of the foot in turnout using a dance specific 3D multi-segment foot model

AU - Carter, Sarah

AU - Bryant, Alan

AU - Hopper, Luke Stephen

PY - 2019/2/4

Y1 - 2019/2/4

N2 - Introduction: Recent three-dimensional (3D) kinematic research has revealed foot abduction is the strongest predictor of standing functional and forced turnout postures. However, it is still unknown how the internal foot joints enable a large degree of foot abduction in turnout. The primary purpose of this study was to use a dance specific multi-segment foot model to determine the lower leg and foot contributions to turnout that female university-level ballets use to accentuate their turnout. Methods: Eighteen female dance students (mean age, 18.8 ± 1.6 years) volunteered for this study. Retro-reflective markers were attached to the dancers' dominant foot. Each dancer performed three repetitions of functional turnout, forced turnout and ten consecutive sautés in first position. Repeated measures ANOVA with Bonferroni adjustments for the multiple comparisons were used to determine the kinematic adjustments, hindfoot eversion, midfoot and forefoot abduction, navicular drop (i.e. lowering of the medial longitudinal arch) and first metatarsophalangeal joint abduction between natural double leg up-right posture and the first position conditions. Results: Hindfoot eversion (4.6°, p < 0.001) and midfoot abduction (2.8°, p < 0.001) significantly increased in functional turnout compared to the natural double leg up-right posture. Thirteen dancers demonstrated increased first metatarsophalangeal joint (MTPJ) abduction in forced turnout, however no statistically significant increase was found. Navicular drop during sautés in first position significantly increased by 11 mm (p < 0.001) compared to the natural double leg up-right posture. Conclusion: Our findings suggest dancers do pronate, via hindfoot eversion and midfoot abduction in both functional and forced turnout, however, no immediate association was found between forced turnout and first MTPJ abduction. Foot pronation does play a role in achieving turnout. Further prospective research on in situ measures of the lower limb in turnout and injury surveillance is required to improve our understanding of the normal and abnormal dance biomechanics. © 2019 The Author(s).

AB - Introduction: Recent three-dimensional (3D) kinematic research has revealed foot abduction is the strongest predictor of standing functional and forced turnout postures. However, it is still unknown how the internal foot joints enable a large degree of foot abduction in turnout. The primary purpose of this study was to use a dance specific multi-segment foot model to determine the lower leg and foot contributions to turnout that female university-level ballets use to accentuate their turnout. Methods: Eighteen female dance students (mean age, 18.8 ± 1.6 years) volunteered for this study. Retro-reflective markers were attached to the dancers' dominant foot. Each dancer performed three repetitions of functional turnout, forced turnout and ten consecutive sautés in first position. Repeated measures ANOVA with Bonferroni adjustments for the multiple comparisons were used to determine the kinematic adjustments, hindfoot eversion, midfoot and forefoot abduction, navicular drop (i.e. lowering of the medial longitudinal arch) and first metatarsophalangeal joint abduction between natural double leg up-right posture and the first position conditions. Results: Hindfoot eversion (4.6°, p < 0.001) and midfoot abduction (2.8°, p < 0.001) significantly increased in functional turnout compared to the natural double leg up-right posture. Thirteen dancers demonstrated increased first metatarsophalangeal joint (MTPJ) abduction in forced turnout, however no statistically significant increase was found. Navicular drop during sautés in first position significantly increased by 11 mm (p < 0.001) compared to the natural double leg up-right posture. Conclusion: Our findings suggest dancers do pronate, via hindfoot eversion and midfoot abduction in both functional and forced turnout, however, no immediate association was found between forced turnout and first MTPJ abduction. Foot pronation does play a role in achieving turnout. Further prospective research on in situ measures of the lower limb in turnout and injury surveillance is required to improve our understanding of the normal and abnormal dance biomechanics. © 2019 The Author(s).

KW - Ballet

KW - three-dimensional

KW - Hallux valgus

KW - Kinematics

KW - Sautés

U2 - 10.1186/s13047-019-0318-1

DO - 10.1186/s13047-019-0318-1

M3 - Article

VL - 12

JO - Journal of Foot and Ankle Research

JF - Journal of Foot and Ankle Research

SN - 1757-1146

IS - 10

ER -