TY - JOUR
T1 - Ammonia-oxidizing archaea bacteria (AOB) and comammox drive the nitrification in alkaline soil under long-term biochar and N fertilizer applications
AU - Sun, Jiali
AU - Rengel, Zed
AU - Zhou, Yizhen
AU - Li, Hongbo
AU - Zhang, Aiping
N1 - Funding Information:
This study was supported by National Natural Science Foundation of China ( 31601834 and 32071506 ) and Basic Research Program of Grassland Research Institute of CAAS ( 1610332023009 ).
Publisher Copyright:
© 2023
PY - 2024/1
Y1 - 2024/1
N2 - Ammonia-oxidizing archaea (AOA), bacteria (AOB) and complete ammonia oxidizers (comammox) take an essential part in soil nitrogen (N) cycling. In case of 8 years biochar and N fertilizer application, nevertheless, the comparative contribution of comammox, AOA and AOB to nitrification is unclear. Our long-term field study on alkaline soil (pHwater 8.49) investigated the impact of biochar and N fertilizer on nitrification rate and potential ammonia oxidation in terms of the soil properties, both physical and chemical, together with the abundance and diversity of AOA, AOB and comammox. The findings revealed that biochar and N fertilizer did not affect the amoA abundance of AOA but increased it in AOB and commamox clade A and clade B, but decreased the diversity of AOA and comammox. Nitrogen fertilization significantly declined the diversity of AOB. The AOB abundance was controlled mainly by pH, whereas the AOA, AOB and comammox Chao1 index were governed by soil microbial biomass carbon (MBC). Additionally, biochar increased the soil nitrification rate with or without N fertilizer, but N fertilizer decreased the soil nitrification rate and potential ammonia oxidation (with nitrite oxidation inhibited) under the same biochar application. Biochar and/or N fertilizer increased the corresponding contribution of AOA and comammox to ammonia oxidation by 143–156 % and 33–395 %, respectively, but suppressed the contribution of AOB. Although the abundance of AOA amoA was obviously greater than that of AOB and comammox, the highest contribution to ammonia oxidation was by AOB in soil not fertilized by N and by comammox in the N-fertilized soil. Our findings suggest that changes in soil properties brought about by biochar and N fertilizer addition can influence the diversity of AOA, AOB and comammox, affecting potential ammonia oxidation and the nitrification rate. The AOB and comammox make a bigger contribution to nitrification than AOA in the alkaline soil.
AB - Ammonia-oxidizing archaea (AOA), bacteria (AOB) and complete ammonia oxidizers (comammox) take an essential part in soil nitrogen (N) cycling. In case of 8 years biochar and N fertilizer application, nevertheless, the comparative contribution of comammox, AOA and AOB to nitrification is unclear. Our long-term field study on alkaline soil (pHwater 8.49) investigated the impact of biochar and N fertilizer on nitrification rate and potential ammonia oxidation in terms of the soil properties, both physical and chemical, together with the abundance and diversity of AOA, AOB and comammox. The findings revealed that biochar and N fertilizer did not affect the amoA abundance of AOA but increased it in AOB and commamox clade A and clade B, but decreased the diversity of AOA and comammox. Nitrogen fertilization significantly declined the diversity of AOB. The AOB abundance was controlled mainly by pH, whereas the AOA, AOB and comammox Chao1 index were governed by soil microbial biomass carbon (MBC). Additionally, biochar increased the soil nitrification rate with or without N fertilizer, but N fertilizer decreased the soil nitrification rate and potential ammonia oxidation (with nitrite oxidation inhibited) under the same biochar application. Biochar and/or N fertilizer increased the corresponding contribution of AOA and comammox to ammonia oxidation by 143–156 % and 33–395 %, respectively, but suppressed the contribution of AOB. Although the abundance of AOA amoA was obviously greater than that of AOB and comammox, the highest contribution to ammonia oxidation was by AOB in soil not fertilized by N and by comammox in the N-fertilized soil. Our findings suggest that changes in soil properties brought about by biochar and N fertilizer addition can influence the diversity of AOA, AOB and comammox, affecting potential ammonia oxidation and the nitrification rate. The AOB and comammox make a bigger contribution to nitrification than AOA in the alkaline soil.
KW - Ammonia-oxidizing archaea and bacteria
KW - Complete ammonia oxidizers
KW - Long-term biochar application
KW - Soil nitrification rate
UR - http://www.scopus.com/inward/record.url?scp=85169929974&partnerID=8YFLogxK
U2 - 10.1016/j.apsoil.2023.105124
DO - 10.1016/j.apsoil.2023.105124
M3 - Article
AN - SCOPUS:85169929974
SN - 0929-1393
VL - 193
JO - Applied Soil Ecology
JF - Applied Soil Ecology
M1 - 105124
ER -