Abstract
Further uprating the catalytic activities of diatomic active sites while maintaining the atomic loading and diatomic coordination by external stimulation is a promising way to break the bottleneck in the improvement of diatomic site catalysts (DASCs). Herein, the as-prepared NiFe@MoS2 DASCs treated by external high-frequency alternating magnetic field (AMF) further expedite the alkaline water electrolysis process with a superior cell voltage of 1.576 V to afford a current density of 10 mA cm-2 than that treated without AMF (1.652 V). Theoretical simulation by COMSOL Multiphysics helps visualize the increase in temperature locally around the diatomic active sites, qualitatively revealing the magnetic heating effect that originates from the anchored magnetic Ni and Fe atoms. The selective magnetic heating of bifunctional diatomic active site proposed in this work can broaden horizons and endow another dimension in the design of highly efficient catalysts toward various complicated energy-related reactions.
Original language | English |
---|---|
Article number | 073901 |
Journal | Applied Physics Letters |
Volume | 122 |
Issue number | 7 |
DOIs | |
Publication status | Published - 13 Feb 2023 |