Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

M. A. Hosain, J. M. Le Floch, J. Krupka, M. E. Tobar

    Research output: Contribution to journalArticle

    • 1 Citations

    Abstract

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4at 20 millikelvin. Measured parallel hyperfine constants, A∥Cu, were determined to be -155.7 × 10-4 cm-1, - 163.0 × 10-4 cm-1, - 178.3 × 10-4 cm-1 and -211.1 × 10-4 cm-1 at 9.072 GHz (WGH4,1,1) for the nuclear magnetic quantum number MI = +3/2 ,+1/2 ,-1/2 , and-3/2 respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static JahnTeller effect. The second-order-anisotropy term, ≈ ( spin-orbit coupling/10Dq )2, is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, - = 9.23 × 10-24JT-1, (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P- = 12.3 × 10-4 cm-1 shows that the mean inverse third power of the electron distance from the nucleus is 〈rq -3〉 ≲ 5.23 a.u. for Cu2+ ion in the substituted Al3+ion site assuming nuclear electric quadruple moment Q = -0.211 barn.

    LanguageEnglish
    Article number015802
    JournalJournal of Physics Condensed Matter
    Volume30
    Issue number1
    DOIs
    StatePublished - 10 Jan 2018

    Fingerprint

    Jahn-Teller effect
    Dielectric resonators
    Paramagnetic resonance
    Anisotropy
    resonators
    Impurities
    Ions
    hyperfine structure
    impurities
    anisotropy
    Single crystals
    Hamiltonians
    ions
    Electrons
    single crystals
    electric moments
    crystal lattices
    Crystal lattices
    quantum numbers
    electron paramagnetic resonance

    Cite this

    @article{602e781c56de4cc4893fb420aa9a90b1,
    title = "Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin",
    abstract = "The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4at 20 millikelvin. Measured parallel hyperfine constants, A∥Cu, were determined to be -155.7 × 10-4 cm-1, - 163.0 × 10-4 cm-1, - 178.3 × 10-4 cm-1 and -211.1 × 10-4 cm-1 at 9.072 GHz (WGH4,1,1) for the nuclear magnetic quantum number MI = +3/2 ,+1/2 ,-1/2 , and-3/2 respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static JahnTeller effect. The second-order-anisotropy term, ≈ ( spin-orbit coupling/10Dq )2, is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, - = 9.23 × 10-24JT-1, (within -0.43{\%} so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P- = 12.3 × 10-4 cm-1 shows that the mean inverse third power of the electron distance from the nucleus is 〈rq -3〉 ≲ 5.23 a.u. for Cu2+ ion in the substituted Al3+ion site assuming nuclear electric quadruple moment Q = -0.211 barn.",
    keywords = "crystal field, effective spin, g-factor, hyperfine structure, multiplet, spin-Hamiltonian, whispering gallery mode",
    author = "Hosain, {M. A.} and {Le Floch}, {J. M.} and J. Krupka and Tobar, {M. E.}",
    year = "2018",
    month = "1",
    day = "10",
    doi = "10.1088/1361-648X/aa9a1e",
    language = "English",
    volume = "30",
    journal = "JOURNAL OF PHYSICS : CONDENSED MATTER",
    issn = "0953-8984",
    publisher = "IOP Publishing",
    number = "1",

    }

    TY - JOUR

    T1 - Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    AU - Hosain,M. A.

    AU - Le Floch,J. M.

    AU - Krupka,J.

    AU - Tobar,M. E.

    PY - 2018/1/10

    Y1 - 2018/1/10

    N2 - The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4at 20 millikelvin. Measured parallel hyperfine constants, A∥Cu, were determined to be -155.7 × 10-4 cm-1, - 163.0 × 10-4 cm-1, - 178.3 × 10-4 cm-1 and -211.1 × 10-4 cm-1 at 9.072 GHz (WGH4,1,1) for the nuclear magnetic quantum number MI = +3/2 ,+1/2 ,-1/2 , and-3/2 respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static JahnTeller effect. The second-order-anisotropy term, ≈ ( spin-orbit coupling/10Dq )2, is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, - = 9.23 × 10-24JT-1, (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P- = 12.3 × 10-4 cm-1 shows that the mean inverse third power of the electron distance from the nucleus is 〈rq -3〉 ≲ 5.23 a.u. for Cu2+ ion in the substituted Al3+ion site assuming nuclear electric quadruple moment Q = -0.211 barn.

    AB - The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4at 20 millikelvin. Measured parallel hyperfine constants, A∥Cu, were determined to be -155.7 × 10-4 cm-1, - 163.0 × 10-4 cm-1, - 178.3 × 10-4 cm-1 and -211.1 × 10-4 cm-1 at 9.072 GHz (WGH4,1,1) for the nuclear magnetic quantum number MI = +3/2 ,+1/2 ,-1/2 , and-3/2 respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static JahnTeller effect. The second-order-anisotropy term, ≈ ( spin-orbit coupling/10Dq )2, is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, - = 9.23 × 10-24JT-1, (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P- = 12.3 × 10-4 cm-1 shows that the mean inverse third power of the electron distance from the nucleus is 〈rq -3〉 ≲ 5.23 a.u. for Cu2+ ion in the substituted Al3+ion site assuming nuclear electric quadruple moment Q = -0.211 barn.

    KW - crystal field

    KW - effective spin

    KW - g-factor

    KW - hyperfine structure

    KW - multiplet

    KW - spin-Hamiltonian

    KW - whispering gallery mode

    UR - http://www.scopus.com/inward/record.url?scp=85038595279&partnerID=8YFLogxK

    U2 - 10.1088/1361-648X/aa9a1e

    DO - 10.1088/1361-648X/aa9a1e

    M3 - Article

    VL - 30

    JO - JOURNAL OF PHYSICS : CONDENSED MATTER

    T2 - JOURNAL OF PHYSICS : CONDENSED MATTER

    JF - JOURNAL OF PHYSICS : CONDENSED MATTER

    SN - 0953-8984

    IS - 1

    M1 - 015802

    ER -