Abstract
This thesis presents the research done towards the development of the final mirror suspension stage for the high power test facility at AIGO, Western Australia. One of the goals of the facility is to test advanced suspension methods that may be useful in future gravitational wave detectors. An in depth study of current mirror suspension techniques is presented and areas of possible improvement are highlighted. The extension of an existing suspension modelling toolkit written in Mathematica is also presented, where added functions allow one to include the violin modes of a suspension into their analysis. Through this tool, new suspension geometries boasting a lower number of violin modes with lower Q factors where developed. The orthogonal ribbon suspension and the thin tube suspension boast a lower number of lower Q violin modes compared to typical ribbon suspensions. For the latter, a reduction in the number of violin modes below 5kHz down to 5 and peak thermal noise amplitude by approximately 30dB is predicted. Presented also is the affect that such suspension geometries have on pendulum mode dilution factor and overall suspension thermal noise. It is seen that the violin mode improvement comes at a cost of a small increase in thermal noise above approximately 50Hz. A theoretical analysis of the AIGO cavity locking control scheme is also given. Issues of sensor noise and dynamic range are considered to produce a possible hierarchical locking method that would be compatible with advanced detectors. The resulting actuator force range requirements for AIGO at each actuation location on the vibration isolation system are given. Requirements of local controls before achieving cavity lock are also discussed. Finally, the suspension of a dummy sapphire mirror using removable modular niobium ribbons is presented. The design and performance of an electrostatic actuator and sensor for suspended mirror control is given. Initial experimental results of positioning and control of the final stage suspension through a digital interface is also included.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Publication status | Unpublished - 2007 |