Projects per year
Abstract
Current methods of estimating boil-off gas (BOG) rates for large-scale liquefied natural gas (LNG) storage tanks are largely empirical and based on limited available experimental data. More accurate models would be extremely valuable for estimating the potential for excessive BOG generation during LNG storage and transportation scenarios as well as providing critical inputs into the design of BOG re-liquefaction systems. This study reports a series of experiments that have been conducted for LNG-like binary mixtures of methane and ethane to measure the BOG production and resultant pressure change under various industrially relevant conditions. Experimental data and observations made in this work are compared with both the available literature and with the predictions of a new non-equilibrium model that uses the GERG-2008 equation of state to calculate relevant LNG and BOG properties. The data reveal three distinct stages of BOG evolution, here labelled as self-pressurisation, transient, and homogenous. It is observed that, in the self-pressurisation stage, the thickness of a thermally stratified layer adjacent to the liquid–vapor interface increases with time. The transient stage is defined to commence when the system reaches the specified relief pressure and the homogeneous stage is reached upon the effective elimination of thermal stratification in the LNG. Good agreement exists between this new model and the experimental and literature data acquired during the self-pressurisation and homogeneous stages. In the transient stage, the model does not accurately quantify the BOG rate indicating a need to incorporate the effects liquid thermal stratification in future model development.
Original language | English |
---|---|
Article number | 116735 |
Journal | Applied Thermal Engineering |
Volume | 189 |
DOIs | |
Publication status | Published - 5 May 2021 |
Fingerprint
Dive into the research topics of 'Advanced boil-off gas studies for liquefied natural gas'. Together they form a unique fingerprint.Projects
- 1 Finished
-
The Australian Centre for LNG Futures
May, E. (Investigator 01), Johns, M. (Investigator 02), Pareek, V. (Investigator 03), Tade, M. (Investigator 04), Aman, Z. (Investigator 05), Li, G. (Investigator 06), Shang, J. (Investigator 07) & Rufford, T. (Investigator 08)
ARC Australian Research Council
1/01/15 → 15/04/21
Project: Research