Abstract
Many realistic epidemic networks display statistically synchronous behavior which we will refer to as epidemic synchronization. However, to the best of our knowledge, there has been no theoretical study of epidemic synchronization. In fact, in many cases, synchronization and epidemic behavior can arise simultaneously and interplay adaptively. In this paper, we first construct mathematical models of epidemic synchronization, based on traditional dynamical models on complex networks, by applying the adaptive mechanisms observed in real networks. Then, we study the relationship between the epidemic rate and synchronization stability of these models and, in particular, obtain the conditions of local and global stability for epidemic synchronization. Finally, we perform numerical analysis to verify our theoretical results. This work is the first to draw a theoretical bridge between epidemic transmission and synchronization dynamics and will be beneficial to the study of control and the analysis of the epidemics on complex networks.
Original language | English |
---|---|
Article number | 033111 |
Journal | Chaos |
Volume | 21 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jan 2011 |
Externally published | Yes |