TY - JOUR
T1 - Acquisition, conservation, and loss of dual-targeted proteins in land plants
AU - Xu, Lin
AU - Carrie, Christopher
AU - Law, Simon
AU - Murcha, Monika
AU - Whelan, James
PY - 2013
Y1 - 2013
N2 - The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dualtargeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins.
AB - The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dualtargeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins.
U2 - 10.1104/pp.112.210997
DO - 10.1104/pp.112.210997
M3 - Article
C2 - 23257241
SN - 0032-0889
VL - 161
SP - 644
EP - 662
JO - Plant Physiology
JF - Plant Physiology
IS - 2
ER -