Acoustic coupling between finite and infinite spaces

Yuhui Tong

    Research output: ThesisDoctoral Thesis

    272 Downloads (Pure)


    This thesis explores the non-Hermitian Hamiltonian method for open acoustic system from the perspective of the coupling between the cavity and the external space. It is shown that the acoustic coupling between finite and infinite spaces can be characterised by a non-Hermitian differential operator, known as the non-Hermitian Hamiltonian of the open system. The eigenvalue problem induced by the non-Hermitian Hamiltonian leads to a modal expansion of the sound field in terms of a series of frequency-dependent eigenmodes, allowing for investigations into the properties of acoustic scatterers and open cavities coupled with semi-infinite spaces.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Awarding Institution
    • The University of Western Australia
    Award date26 Jul 2017
    Publication statusUnpublished - 2017


    Dive into the research topics of 'Acoustic coupling between finite and infinite spaces'. Together they form a unique fingerprint.

    Cite this