Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS

Aleksey Sadekov, Nicholas S. Lloyd, Sambuddha Misra, Julie Trotter, Juan D'Olivo, Malcolm McCulloch

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . Accurate, high precision boron isotopic measurements, however, remain analytically challenging with conventional approaches being extremely time consuming and labour intensive. Here we present a new analytical approach for high precision accurate measurements of boron isotope compositions in biogenic carbonates. We show that a laser ablation MC-ICPMS system equipped with 10 13 Ω amplifiers provides a powerful tool for determining micro-scale δ 11 B values with an internal precision of ≤0.15‰ (2SD) and a total long-term accuracy of better than 0.22‰, which is equivalent to or better than those of conventional solution-based methods. This accuracy is achieved by careful subtraction of baseline interference around the masses of 10 B and 11 B, which arises from matrix-specific scattered Ca, C, and O ions. We also report detailed protocols for time-response corrections of transient signals in biogenic carbonates, essential for high precision boron isotopic measurements when using 10 13 Ω amplifiers. The overall veracity of our laser ablation MC-ICPMS method is further demonstrated by the isotopic variability observed at macro- (mm) and micro-scales (μm) in both calcite and aragonite biogenic minerals. An aragonite deep-sea coral, Desmophyllum dianthus, is shown to preserve large (up to 6‰) variations in δ 11 B accompanied by near synchronous changes in B/Ca. This variability is excessive compared to that expected for the relatively stable carbonate ion system of deep-ocean water and is therefore attributed to isotopic and elemental fractionation of B during coral biomineralisation. In contrast, cyclic 2.5‰ variability is found in the sclerosponge Ceratoporella nicholsoni , which can be directly linked to seasonal changes in seawater pH. These examples highlight the power of laser ablation MC-ICPMS and its ability to accurately and precisely recover small environmental signals in boron isotopes. We thus show that these significant improvements in both the internal precision and now long-term accuracy and reproducibility of laser ablation MC-ICPMS, together with its microscale analytical capabilities and relatively rapid ease of operation, have the potential to revolutionise the study of boron isotope systematics in biogenic carbonates.
Original languageEnglish
Pages (from-to)550-560
JournalJournal of Analytical Atomic Spectrometry
Volume34
Issue number3
DOIs
Publication statusPublished - 3 Jan 2019

Fingerprint

Boron
Calcium Carbonate
Carbonates
Laser ablation
Isotopes
Seawater
Carbon Monoxide
Chemical analysis
Ions
Response time (computer systems)
Biomineralization
Fractionation
Minerals
Macros
Personnel
Network protocols
Water

Cite this

@article{891cd9412a824ef58f4f2ee856e3761a,
title = "Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS",
abstract = "The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . Accurate, high precision boron isotopic measurements, however, remain analytically challenging with conventional approaches being extremely time consuming and labour intensive. Here we present a new analytical approach for high precision accurate measurements of boron isotope compositions in biogenic carbonates. We show that a laser ablation MC-ICPMS system equipped with 10 13 Ω amplifiers provides a powerful tool for determining micro-scale δ 11 B values with an internal precision of ≤0.15‰ (2SD) and a total long-term accuracy of better than 0.22‰, which is equivalent to or better than those of conventional solution-based methods. This accuracy is achieved by careful subtraction of baseline interference around the masses of 10 B and 11 B, which arises from matrix-specific scattered Ca, C, and O ions. We also report detailed protocols for time-response corrections of transient signals in biogenic carbonates, essential for high precision boron isotopic measurements when using 10 13 Ω amplifiers. The overall veracity of our laser ablation MC-ICPMS method is further demonstrated by the isotopic variability observed at macro- (mm) and micro-scales (μm) in both calcite and aragonite biogenic minerals. An aragonite deep-sea coral, Desmophyllum dianthus, is shown to preserve large (up to 6‰) variations in δ 11 B accompanied by near synchronous changes in B/Ca. This variability is excessive compared to that expected for the relatively stable carbonate ion system of deep-ocean water and is therefore attributed to isotopic and elemental fractionation of B during coral biomineralisation. In contrast, cyclic 2.5‰ variability is found in the sclerosponge Ceratoporella nicholsoni , which can be directly linked to seasonal changes in seawater pH. These examples highlight the power of laser ablation MC-ICPMS and its ability to accurately and precisely recover small environmental signals in boron isotopes. We thus show that these significant improvements in both the internal precision and now long-term accuracy and reproducibility of laser ablation MC-ICPMS, together with its microscale analytical capabilities and relatively rapid ease of operation, have the potential to revolutionise the study of boron isotope systematics in biogenic carbonates.",
author = "Aleksey Sadekov and Lloyd, {Nicholas S.} and Sambuddha Misra and Julie Trotter and Juan D'Olivo and Malcolm McCulloch",
year = "2019",
month = "1",
day = "3",
doi = "10.1039/c8ja00444g",
language = "English",
volume = "34",
pages = "550--560",
journal = "Journal of Analytical Atomic Spectometry",
issn = "0267-9477",
publisher = "The Royal Society of Chemistry",
number = "3",

}

Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS. / Sadekov, Aleksey; Lloyd, Nicholas S.; Misra, Sambuddha; Trotter, Julie; D'Olivo, Juan; McCulloch, Malcolm.

In: Journal of Analytical Atomic Spectrometry, Vol. 34, No. 3, 03.01.2019, p. 550-560.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS

AU - Sadekov, Aleksey

AU - Lloyd, Nicholas S.

AU - Misra, Sambuddha

AU - Trotter, Julie

AU - D'Olivo, Juan

AU - McCulloch, Malcolm

PY - 2019/1/3

Y1 - 2019/1/3

N2 - The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . Accurate, high precision boron isotopic measurements, however, remain analytically challenging with conventional approaches being extremely time consuming and labour intensive. Here we present a new analytical approach for high precision accurate measurements of boron isotope compositions in biogenic carbonates. We show that a laser ablation MC-ICPMS system equipped with 10 13 Ω amplifiers provides a powerful tool for determining micro-scale δ 11 B values with an internal precision of ≤0.15‰ (2SD) and a total long-term accuracy of better than 0.22‰, which is equivalent to or better than those of conventional solution-based methods. This accuracy is achieved by careful subtraction of baseline interference around the masses of 10 B and 11 B, which arises from matrix-specific scattered Ca, C, and O ions. We also report detailed protocols for time-response corrections of transient signals in biogenic carbonates, essential for high precision boron isotopic measurements when using 10 13 Ω amplifiers. The overall veracity of our laser ablation MC-ICPMS method is further demonstrated by the isotopic variability observed at macro- (mm) and micro-scales (μm) in both calcite and aragonite biogenic minerals. An aragonite deep-sea coral, Desmophyllum dianthus, is shown to preserve large (up to 6‰) variations in δ 11 B accompanied by near synchronous changes in B/Ca. This variability is excessive compared to that expected for the relatively stable carbonate ion system of deep-ocean water and is therefore attributed to isotopic and elemental fractionation of B during coral biomineralisation. In contrast, cyclic 2.5‰ variability is found in the sclerosponge Ceratoporella nicholsoni , which can be directly linked to seasonal changes in seawater pH. These examples highlight the power of laser ablation MC-ICPMS and its ability to accurately and precisely recover small environmental signals in boron isotopes. We thus show that these significant improvements in both the internal precision and now long-term accuracy and reproducibility of laser ablation MC-ICPMS, together with its microscale analytical capabilities and relatively rapid ease of operation, have the potential to revolutionise the study of boron isotope systematics in biogenic carbonates.

AB - The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . The boron isotope compositions (δ 11 B) of biogenic carbonates have proven to be an invaluable tool for investigating changes in ocean carbonate chemistry, especially the impacts of declining seawater pH due to rising levels of atmospheric CO 2 . Accurate, high precision boron isotopic measurements, however, remain analytically challenging with conventional approaches being extremely time consuming and labour intensive. Here we present a new analytical approach for high precision accurate measurements of boron isotope compositions in biogenic carbonates. We show that a laser ablation MC-ICPMS system equipped with 10 13 Ω amplifiers provides a powerful tool for determining micro-scale δ 11 B values with an internal precision of ≤0.15‰ (2SD) and a total long-term accuracy of better than 0.22‰, which is equivalent to or better than those of conventional solution-based methods. This accuracy is achieved by careful subtraction of baseline interference around the masses of 10 B and 11 B, which arises from matrix-specific scattered Ca, C, and O ions. We also report detailed protocols for time-response corrections of transient signals in biogenic carbonates, essential for high precision boron isotopic measurements when using 10 13 Ω amplifiers. The overall veracity of our laser ablation MC-ICPMS method is further demonstrated by the isotopic variability observed at macro- (mm) and micro-scales (μm) in both calcite and aragonite biogenic minerals. An aragonite deep-sea coral, Desmophyllum dianthus, is shown to preserve large (up to 6‰) variations in δ 11 B accompanied by near synchronous changes in B/Ca. This variability is excessive compared to that expected for the relatively stable carbonate ion system of deep-ocean water and is therefore attributed to isotopic and elemental fractionation of B during coral biomineralisation. In contrast, cyclic 2.5‰ variability is found in the sclerosponge Ceratoporella nicholsoni , which can be directly linked to seasonal changes in seawater pH. These examples highlight the power of laser ablation MC-ICPMS and its ability to accurately and precisely recover small environmental signals in boron isotopes. We thus show that these significant improvements in both the internal precision and now long-term accuracy and reproducibility of laser ablation MC-ICPMS, together with its microscale analytical capabilities and relatively rapid ease of operation, have the potential to revolutionise the study of boron isotope systematics in biogenic carbonates.

UR - http://www.mendeley.com/research/accurate-precise-microscale-measurements-boron-isotope-ratios-calcium-carbonates-using-laser-ablatio-1

U2 - 10.1039/c8ja00444g

DO - 10.1039/c8ja00444g

M3 - Article

VL - 34

SP - 550

EP - 560

JO - Journal of Analytical Atomic Spectometry

JF - Journal of Analytical Atomic Spectometry

SN - 0267-9477

IS - 3

ER -