TY - JOUR
T1 - Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals
AU - Turner, Michael
AU - Grabowsky, Simon
AU - Jayatilaka, Dylan
AU - Spackman, Mark
PY - 2014/12/18
Y1 - 2014/12/18
N2 - © 2014 American Chemical Society. The energy of interaction between molecules is commonly expressed in terms of four key components: electrostatic, polarization, dispersion, and exchange-repulsion. Using monomer wave functions to obtain accurate estimates of electrostatic, polarization, and repulsion energies along with Grimmes dispersion corrections, a series of energy models are derived by fitting to dispersion-corrected DFT energies for a large number of molecular pairs extracted from organic and inorganic molecular crystals. The best performing model reproduces B3LYP-D2/6-31G(d,p) counterpoise-corrected energies with a mean absolute deviation (MAD) of just over 1 kJ mol-1 but in considerably less computation time. It also performs surprisingly well against benchmark CCSD(T)/CBS energies, with a MAD of 2.5 kJ mol-1 for a combined data set including Hobzas X40, S22, A24, and S66 dimers. Two of these energy models, the most accurate and the fastest, are expected to find widespread application in investigations of molecular crystals.
AB - © 2014 American Chemical Society. The energy of interaction between molecules is commonly expressed in terms of four key components: electrostatic, polarization, dispersion, and exchange-repulsion. Using monomer wave functions to obtain accurate estimates of electrostatic, polarization, and repulsion energies along with Grimmes dispersion corrections, a series of energy models are derived by fitting to dispersion-corrected DFT energies for a large number of molecular pairs extracted from organic and inorganic molecular crystals. The best performing model reproduces B3LYP-D2/6-31G(d,p) counterpoise-corrected energies with a mean absolute deviation (MAD) of just over 1 kJ mol-1 but in considerably less computation time. It also performs surprisingly well against benchmark CCSD(T)/CBS energies, with a MAD of 2.5 kJ mol-1 for a combined data set including Hobzas X40, S22, A24, and S66 dimers. Two of these energy models, the most accurate and the fastest, are expected to find widespread application in investigations of molecular crystals.
U2 - 10.1021/jz502271c
DO - 10.1021/jz502271c
M3 - Article
C2 - 26273970
SN - 1948-7185
VL - 5
SP - 4249
EP - 4255
JO - Journal of Physical Chemistry Letters
JF - Journal of Physical Chemistry Letters
IS - 24
ER -