Accuracy of orthognathic surgery using 3D computer-assisted surgical simulation

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Objective: To evaluate the accuracy of maxilla and mandibular repositioning during two-jaw orthognathic surgery using computerassisted surgical simulation (CASS).

Materials and methods: Fifteen patients who underwent two-jaw orthognathic surgery using CASS (VSP® Orthognathics by 3D Systems) were evaluated to assess the accuracy of the simulation. Translational and rotational discrepancies of the centroids of the maxilla and mandible and the translational discrepancy of the dental midline between the planned and actual outcomes were reported using the root mean square error (RMSE). The number of cases that exceeded limits set for clinical significance, the direction of the error in relation to the direction of planned movement and the differences between segmental and non-segmental procedures were evaluated as secondary outcomes.

Results: The largest translational RMSE was 1.53 mm along the y-axis in the maxilla and 1.34 mm along the y-axis in the mandible. The largest rotational RMSE was 1.9° about the x-axis in the maxilla and 1.16° about the x- and y-axes in the mandible. The largest RMSE for the dental midline was 1.6 mm along the y-axis in the maxilla and 1.34 mm along the y-axis in the mandible. A tendency for insufficient advancement of the maxilla was noted.

Conclusions: CASS is an efficient and accurate way to develop the surgical plan and transfer the plan to the patient intraoperatively. While CASS is accurate on a population level, there remains the potential for clinically significant errors to occur on an individual basis.
Original languageEnglish
Pages (from-to)17-26
Number of pages10
JournalAustralasian Orthodontic Journal
Volume34
Issue number1
Publication statusPublished - 1 May 2018

Fingerprint

Dive into the research topics of 'Accuracy of orthognathic surgery using 3D computer-assisted surgical simulation'. Together they form a unique fingerprint.

Cite this