TY - JOUR
T1 - Accuracy of mandibular repositioning surgery using new technology
T2 - Computer-aided design and manufacturing customized surgical cutting guides and fixation plates
AU - Yoo, Ho Jin
AU - Hartsfield, James K.
AU - Mian, Ajmal S.
AU - Allan, Brent P.
AU - Naoum, Steven
AU - Lee, Richard J.H.
AU - Goonewardene, Mithran S.
PY - 2023/3
Y1 - 2023/3
N2 - Introduction: Recent 3-dimensional technology advancements have resulted in new techniques to improve the accuracy of intraoperative transfer. This study aimed to validate the accuracy of computer-aided design and manufacturing (CAD-CAM) customized surgical cutting guides and fixation plates on mandibular repositioning surgery performed in isolation or combined with simultaneous maxillary repositioning surgery. Methods: Sixty patients who underwent mandibular advancement surgery by the same surgeon were retrospectively evaluated by 3-dimensional surface-based superimposition. A 3-point coordinate system (x, y, z) was used to identify the linear and angular discrepancies between the planned movements and actual outcomes. Wilcoxon rank sum test was used to compare the outcomes between the mandible-only and the bimaxillary surgery groups with significance at P <0.05. Pearson correlation coefficient compared planned mandible advancement to the outcome from advancement planned. The centroid, which represents the mandible as a single unit, was computed from 3 landmarks, and the discrepancies were evaluated by the root mean square error (RMSE) for clinical significance set at 2 mm for linear discrepancies and 4° for angular discrepancies. Results: There was no statistically significant difference between the planned and actual position of the mandible in either group when considering absolute values of the differences. When considering raw directional data, a statistically significant difference was identified in the y-axis suggesting a tendency for under-advancement of the mandible in the bimaxillary group. The largest translational RMSE for the centroid was 0.77 mm in the sagittal dimension for the bimaxillary surgery group. The largest rotational RMSE for the centroid was 1.25° in the transverse dimension for the bimaxillary surgery group. Our results show that the precision and clinical feasibility of CAD-CAM customized surgical cutting guides and fixation plates on mandibular repositioning surgery is well within clinically acceptable parameters. Conclusion: Mandibular repositioning surgery can be performed predictably and accurately with the aid of CAD-CAM customized surgical cutting guides and fixation plates with or without maxillary surgery.
AB - Introduction: Recent 3-dimensional technology advancements have resulted in new techniques to improve the accuracy of intraoperative transfer. This study aimed to validate the accuracy of computer-aided design and manufacturing (CAD-CAM) customized surgical cutting guides and fixation plates on mandibular repositioning surgery performed in isolation or combined with simultaneous maxillary repositioning surgery. Methods: Sixty patients who underwent mandibular advancement surgery by the same surgeon were retrospectively evaluated by 3-dimensional surface-based superimposition. A 3-point coordinate system (x, y, z) was used to identify the linear and angular discrepancies between the planned movements and actual outcomes. Wilcoxon rank sum test was used to compare the outcomes between the mandible-only and the bimaxillary surgery groups with significance at P <0.05. Pearson correlation coefficient compared planned mandible advancement to the outcome from advancement planned. The centroid, which represents the mandible as a single unit, was computed from 3 landmarks, and the discrepancies were evaluated by the root mean square error (RMSE) for clinical significance set at 2 mm for linear discrepancies and 4° for angular discrepancies. Results: There was no statistically significant difference between the planned and actual position of the mandible in either group when considering absolute values of the differences. When considering raw directional data, a statistically significant difference was identified in the y-axis suggesting a tendency for under-advancement of the mandible in the bimaxillary group. The largest translational RMSE for the centroid was 0.77 mm in the sagittal dimension for the bimaxillary surgery group. The largest rotational RMSE for the centroid was 1.25° in the transverse dimension for the bimaxillary surgery group. Our results show that the precision and clinical feasibility of CAD-CAM customized surgical cutting guides and fixation plates on mandibular repositioning surgery is well within clinically acceptable parameters. Conclusion: Mandibular repositioning surgery can be performed predictably and accurately with the aid of CAD-CAM customized surgical cutting guides and fixation plates with or without maxillary surgery.
UR - http://www.scopus.com/inward/record.url?scp=85145340669&partnerID=8YFLogxK
U2 - 10.1016/j.ajodo.2021.12.021
DO - 10.1016/j.ajodo.2021.12.021
M3 - Article
C2 - 36503861
AN - SCOPUS:85145340669
SN - 0889-5406
VL - 163
SP - 357-367.e3
JO - American Journal of Orthodontics and Dentofacial Orthopedics
JF - American Journal of Orthodontics and Dentofacial Orthopedics
IS - 3
ER -