TY - JOUR
T1 - Absence of desmin slightly prolongs myoblast proliferation and delays fusion in vivo in regenerating grafts of skeletal muscle
AU - Smythe, G.M.
AU - Davies, Marilyn
AU - Paulin, D.
AU - Grounds, Miranda
PY - 2001
Y1 - 2001
N2 - The expression of desmin, a muscle-specific intermediate filament protein, is upregulated during skeletal myogenesis, but its role in the myogenic process is unclear. Postnatal skeletal muscle regeneration occurs to completion in desmin null (-/-) mice, however, only late time points (i.e., days 7 and 21) in the myogenic process have been examined. This study observes the early events in skeletal muscle regeneration (i.e., from 3 days) in desmin (-/-) mice. Whole muscle autografts were performed in desmin (-/-) and control normal (Balb/c) mice. Muscle samples were taken on days 3, 5, 6, 7, 8, 9 and 11 after transplantation? and regeneration was assessed by graft morphology, patterns of cell proliferation and quantitation of myotube numbers. At day 5 myotube formation was delayed in the desmin (-/-) grafts compared to the normal controls. Immunohistochemical analysis of proliferating cell nuclear antigen demonstrated a very high proportion of proliferating cells in the periphery of desmin (-/-) whole muscle grafts at day 5 compared to the controls, where mitosis in this area was negligible. This strongly indicates t hat myoblast proliferation is prolonged during postnatal myogenesis in the absence of desmin. By day 6 there was no marked morphological difference between desmin (-/-) and normal control whole muscle grafts, although the zonal pattern of myoblast replication was slightly delayed in the desmin (-/-) mice until day 8. These results indicate a slightly extended phase of myoblast proliferation with delayed fusion in vivo in mature regenerating desmin (-/-) skeletal muscle.
AB - The expression of desmin, a muscle-specific intermediate filament protein, is upregulated during skeletal myogenesis, but its role in the myogenic process is unclear. Postnatal skeletal muscle regeneration occurs to completion in desmin null (-/-) mice, however, only late time points (i.e., days 7 and 21) in the myogenic process have been examined. This study observes the early events in skeletal muscle regeneration (i.e., from 3 days) in desmin (-/-) mice. Whole muscle autografts were performed in desmin (-/-) and control normal (Balb/c) mice. Muscle samples were taken on days 3, 5, 6, 7, 8, 9 and 11 after transplantation? and regeneration was assessed by graft morphology, patterns of cell proliferation and quantitation of myotube numbers. At day 5 myotube formation was delayed in the desmin (-/-) grafts compared to the normal controls. Immunohistochemical analysis of proliferating cell nuclear antigen demonstrated a very high proportion of proliferating cells in the periphery of desmin (-/-) whole muscle grafts at day 5 compared to the controls, where mitosis in this area was negligible. This strongly indicates t hat myoblast proliferation is prolonged during postnatal myogenesis in the absence of desmin. By day 6 there was no marked morphological difference between desmin (-/-) and normal control whole muscle grafts, although the zonal pattern of myoblast replication was slightly delayed in the desmin (-/-) mice until day 8. These results indicate a slightly extended phase of myoblast proliferation with delayed fusion in vivo in mature regenerating desmin (-/-) skeletal muscle.
U2 - 10.1007/s004410100366
DO - 10.1007/s004410100366
M3 - Article
SN - 0302-766X
VL - 304
SP - 287
EP - 294
JO - Cell and Tissue Research
JF - Cell and Tissue Research
ER -