Abstract
The p53 tumor suppressor protein is a critical mediator of cell cycle arrest and apoptosis in response to genotoxic stress. Abrogation of p53 function is a major feature of tumor development and may result in a compromised DNA-damage response. In our study, we examined the effect of expressing a human p53 cDNA, encoding a histidine to leucine amino acid substitution at codon 179 (H179L), on the ability of wild-type p53-containing NIH3T3 cells to respond to treatment with the chemotherapeutic cisplatin. After 72 hr of cisplatin treatment control cells underwent apoptosis preceded by a combination of S- and G(2) arrest, as judged by flow cytometry of propidium iodide-stained cells, and TUNEL and caspase-3 assays. This correlated with increased expression of the pro-apoptotic protein Bax. In contrast, cells stably expressing H179L-p53 arrested in S-phase following cisplatin treatment, which correlated with a marked decrease in the expression of cdc2, cyclin B1 and cyclin A, and a decrease in CDK2 and cyclin A-associated kinase activity. Interestingly, H179L p53 expressing cells underwent apoptosis earlier than control cells, indicating that this aberrant p53 may enhance cisplatin chemosensitivity. These data suggest that dominant-negative p53 can influence the expression and activity of CDK complexes, thereby modifying cell behavior following cisplatin-induced genotoxicity.
Original language | English |
---|---|
Pages (from-to) | 760-70 |
Number of pages | 11 |
Journal | International Journal of Cancer |
Volume | 112 |
Issue number | 5 |
DOIs | |
Publication status | Published - 10 Dec 2004 |
Externally published | Yes |