TY - JOUR
T1 - A synoptic classification of inflow-generating precipitation in the Snowy Mountains, Australia
AU - Theobald, A.
AU - Mcgowan, H.
AU - Speirs, J.
AU - Callow, Nik
PY - 2015
Y1 - 2015
N2 - © 2015 American Meteorological Society. Precipitation falling in the Snowy Mountains region of southeastern Australia provides fuel for hydroelectric power generation and environmental flows along major river systems, as well as critical water resources for agricultural irrigation. A synoptic climatology of daily precipitation that triggers a quantifiable increase in streamflow in the headwater catchments of the Snowy Mountains region is presented for the period 1958-2012. Here, previous synoptic-meteorological studies of the region are extended by using a longer-term, year-round precipitation and reanalysis dataset combined with a novel, automated synoptic-classification technique. A three-dimensional representation of synoptic circulation is developed by effectively combining meteorological variables through the depth of the troposphere. Eleven distinct synoptic types are identified, describing key circulation features and moisture pathways that deliver precipitation to the Snowy Mountains. Synoptic types with the highest precipitation totals are commonly associated with moisture pathways originating from the northeast and northwest of Australia. These systems generate the greatest precipitation totals across the westerly and high-elevation areas of the Snowy Mountains, but precipitation is reduced in the eastern-elevation areas in the lee of the mountain ranges. In eastern regions, synoptic types with onshore transport of humid air from the Tasman Sea are the major source of precipitation. Strong seasonality in synoptic types is evident, with frontal and cutoff-low types dominating in winter and inland heat troughs prevailing in summer. Interaction between tropical and extratropical systems is evident in all seasons.
AB - © 2015 American Meteorological Society. Precipitation falling in the Snowy Mountains region of southeastern Australia provides fuel for hydroelectric power generation and environmental flows along major river systems, as well as critical water resources for agricultural irrigation. A synoptic climatology of daily precipitation that triggers a quantifiable increase in streamflow in the headwater catchments of the Snowy Mountains region is presented for the period 1958-2012. Here, previous synoptic-meteorological studies of the region are extended by using a longer-term, year-round precipitation and reanalysis dataset combined with a novel, automated synoptic-classification technique. A three-dimensional representation of synoptic circulation is developed by effectively combining meteorological variables through the depth of the troposphere. Eleven distinct synoptic types are identified, describing key circulation features and moisture pathways that deliver precipitation to the Snowy Mountains. Synoptic types with the highest precipitation totals are commonly associated with moisture pathways originating from the northeast and northwest of Australia. These systems generate the greatest precipitation totals across the westerly and high-elevation areas of the Snowy Mountains, but precipitation is reduced in the eastern-elevation areas in the lee of the mountain ranges. In eastern regions, synoptic types with onshore transport of humid air from the Tasman Sea are the major source of precipitation. Strong seasonality in synoptic types is evident, with frontal and cutoff-low types dominating in winter and inland heat troughs prevailing in summer. Interaction between tropical and extratropical systems is evident in all seasons.
U2 - 10.1175/JAMC-D-14-0278.1
DO - 10.1175/JAMC-D-14-0278.1
M3 - Article
SN - 1558-8424
VL - 54
SP - 1713
EP - 1732
JO - Journal of Applied Meteorology and Climatology
JF - Journal of Applied Meteorology and Climatology
IS - 8
ER -