A study of the monocyte-derived cell populations of the uveal tract and retina in homeostatic conditions and during the early stages of ocular autoimmune disease

Jelena Kezic

    Research output: ThesisDoctoral Thesis

    249 Downloads (Pure)

    Abstract

    The eye contains closely related but widely different tissues, offering a unique opportunity to investigate the phenotype and function of monocyte-derived cell populations within functionally unique microenvironments in a single complex organ. The uveal tract and retina contain rich networks of immune cells that reside and traffic through the eye, these cells having been implicated in various ocular inflammatory processes and immune-mediated diseases. One such inflammatory condition is human posterior uveitis, an autoimmune disease mainly affecting the retina. As current treatments for posterior uveitis only serve to slow down disease progression, studies using animal models, namely, experimental autoimmune uveoretinitis (EAU), have focused on determining the key cellular and molecular mediators involved in disease initiation in order to expand the potential for novel therapeutic applications. The overall purpose of experiments in this thesis was to explore monocyte-derived cell populations of the uveal tract and retina, this being achieved by utilising a novel transgenic mouse model. Cx3cr1gfp/gfp transgenic mice on both BALB/c and C57Bl/6 backgrounds contain an enhanced green fluorescent protein (eGFP) encoding cassette knocked into the Cx3cr1 gene, disrupting its expression but facilitating GFP expression under the control of the Cx3cr1 promoter. Heterozygous (Cx3cr1+/gfp) mice were generated by crossing Cx3cr1gfp/gfp mice to wild-type (WT) mice. This transgenic model allowed for the exquisite visualisation of Cx3cr1-bearing monocyte-derived dendritic cells (DC) and macrophages in ocular tissues, whilst also enabling the investigation of a potential role for Cx3cr1 in recruiting monocyte-derived cells to the eye in steady-state and inflammatory conditions.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2008

    Fingerprint Dive into the research topics of 'A study of the monocyte-derived cell populations of the uveal tract and retina in homeostatic conditions and during the early stages of ocular autoimmune disease'. Together they form a unique fingerprint.

    Cite this