A study of the interaction between the physical and ecological processes of three aquatic ecosystems

    Research output: ThesisDoctoral Thesis

    394 Downloads (Pure)

    Abstract

    Due to the complex nature of aquatic food webs, the interaction between abiotic and biotic factors that govern ecosystem dynamics is often elusive. Recent advancements in both the collection of reliable field data and the development of ecological models have enabled researchers to gain insights into these more complex interactions. In this study the relationship between physical and ecological processes has been explored by applying a process based coupled physical and ecological model (DYRESM-CAEDYM) to the data sets of three aquatic ecosystems. In the first, the role of zooplankton in the nutrient cycles of Lake Kinneret, Israel was quantified. The model was parameterized and calibrated using an extensive field data set. It was found that the excretion of dissolved nutrients by zooplankton accounted for up to 58% of phytoplankton demand and that this value varied seasonally in response to patterns of stratification and mixing. In the second ecosystem, Mono Lake, USA, results from model simulations were studied to determine the significance of the transport of nutrient rich hypolimnetic water via the benthic boundary layer (BBL) on lake productivity. Model results indicated that although on average the impact of BBL transport on Mono Lake ecology was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active. The timing of these fluxes in the context of seasonal changes were found to be critical to specific aspects of food web dynamics. In the final application, the ecological gradients of the primary salt ponds of Shark Bay, Australia were studied with specific focus on the role of zooplankton as a determinant of ecosystem dynamics. Model results indicated that zooplankton grazing was responsible for reduced water column particulate organic matter and increased light available for the development of microbial mats. However, no direct 8 link between zooplankton grazing and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds was found. Results from this study demonstrate the potential of a lake ecosystem model to extract useful process information to complement field data collection and address questions related to the relationship between physical and ecological processes in aquatic ecosystems.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2005

    Fingerprint

    aquatic ecosystem
    zooplankton
    benthic boundary layer
    ecosystem dynamics
    lake
    food web
    nutrient
    grazing
    pond
    microbial mat
    lake ecosystem
    biotic factor
    nutrient limitation
    particulate organic matter
    shark
    excretion
    stratification
    water column
    phytoplankton
    ecology

    Cite this

    @phdthesis{d8c017581e4e4fb395dd74d6c85b9c9e,
    title = "A study of the interaction between the physical and ecological processes of three aquatic ecosystems",
    abstract = "Due to the complex nature of aquatic food webs, the interaction between abiotic and biotic factors that govern ecosystem dynamics is often elusive. Recent advancements in both the collection of reliable field data and the development of ecological models have enabled researchers to gain insights into these more complex interactions. In this study the relationship between physical and ecological processes has been explored by applying a process based coupled physical and ecological model (DYRESM-CAEDYM) to the data sets of three aquatic ecosystems. In the first, the role of zooplankton in the nutrient cycles of Lake Kinneret, Israel was quantified. The model was parameterized and calibrated using an extensive field data set. It was found that the excretion of dissolved nutrients by zooplankton accounted for up to 58{\%} of phytoplankton demand and that this value varied seasonally in response to patterns of stratification and mixing. In the second ecosystem, Mono Lake, USA, results from model simulations were studied to determine the significance of the transport of nutrient rich hypolimnetic water via the benthic boundary layer (BBL) on lake productivity. Model results indicated that although on average the impact of BBL transport on Mono Lake ecology was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active. The timing of these fluxes in the context of seasonal changes were found to be critical to specific aspects of food web dynamics. In the final application, the ecological gradients of the primary salt ponds of Shark Bay, Australia were studied with specific focus on the role of zooplankton as a determinant of ecosystem dynamics. Model results indicated that zooplankton grazing was responsible for reduced water column particulate organic matter and increased light available for the development of microbial mats. However, no direct 8 link between zooplankton grazing and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds was found. Results from this study demonstrate the potential of a lake ecosystem model to extract useful process information to complement field data collection and address questions related to the relationship between physical and ecological processes in aquatic ecosystems.",
    keywords = "Aquatic ecology, Computer simulation, Zooplankton, Ecology, Western Australia, Shark Bay, California, Mono Lake, Israel, Tiberias, Lake, Limnological study",
    author = "Louise Bruce",
    year = "2005",
    language = "English",

    }

    TY - THES

    T1 - A study of the interaction between the physical and ecological processes of three aquatic ecosystems

    AU - Bruce, Louise

    PY - 2005

    Y1 - 2005

    N2 - Due to the complex nature of aquatic food webs, the interaction between abiotic and biotic factors that govern ecosystem dynamics is often elusive. Recent advancements in both the collection of reliable field data and the development of ecological models have enabled researchers to gain insights into these more complex interactions. In this study the relationship between physical and ecological processes has been explored by applying a process based coupled physical and ecological model (DYRESM-CAEDYM) to the data sets of three aquatic ecosystems. In the first, the role of zooplankton in the nutrient cycles of Lake Kinneret, Israel was quantified. The model was parameterized and calibrated using an extensive field data set. It was found that the excretion of dissolved nutrients by zooplankton accounted for up to 58% of phytoplankton demand and that this value varied seasonally in response to patterns of stratification and mixing. In the second ecosystem, Mono Lake, USA, results from model simulations were studied to determine the significance of the transport of nutrient rich hypolimnetic water via the benthic boundary layer (BBL) on lake productivity. Model results indicated that although on average the impact of BBL transport on Mono Lake ecology was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active. The timing of these fluxes in the context of seasonal changes were found to be critical to specific aspects of food web dynamics. In the final application, the ecological gradients of the primary salt ponds of Shark Bay, Australia were studied with specific focus on the role of zooplankton as a determinant of ecosystem dynamics. Model results indicated that zooplankton grazing was responsible for reduced water column particulate organic matter and increased light available for the development of microbial mats. However, no direct 8 link between zooplankton grazing and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds was found. Results from this study demonstrate the potential of a lake ecosystem model to extract useful process information to complement field data collection and address questions related to the relationship between physical and ecological processes in aquatic ecosystems.

    AB - Due to the complex nature of aquatic food webs, the interaction between abiotic and biotic factors that govern ecosystem dynamics is often elusive. Recent advancements in both the collection of reliable field data and the development of ecological models have enabled researchers to gain insights into these more complex interactions. In this study the relationship between physical and ecological processes has been explored by applying a process based coupled physical and ecological model (DYRESM-CAEDYM) to the data sets of three aquatic ecosystems. In the first, the role of zooplankton in the nutrient cycles of Lake Kinneret, Israel was quantified. The model was parameterized and calibrated using an extensive field data set. It was found that the excretion of dissolved nutrients by zooplankton accounted for up to 58% of phytoplankton demand and that this value varied seasonally in response to patterns of stratification and mixing. In the second ecosystem, Mono Lake, USA, results from model simulations were studied to determine the significance of the transport of nutrient rich hypolimnetic water via the benthic boundary layer (BBL) on lake productivity. Model results indicated that although on average the impact of BBL transport on Mono Lake ecology was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active. The timing of these fluxes in the context of seasonal changes were found to be critical to specific aspects of food web dynamics. In the final application, the ecological gradients of the primary salt ponds of Shark Bay, Australia were studied with specific focus on the role of zooplankton as a determinant of ecosystem dynamics. Model results indicated that zooplankton grazing was responsible for reduced water column particulate organic matter and increased light available for the development of microbial mats. However, no direct 8 link between zooplankton grazing and observed changes in planktonic algal species composition or nutrient limitation across the salinity gradient of the ponds was found. Results from this study demonstrate the potential of a lake ecosystem model to extract useful process information to complement field data collection and address questions related to the relationship between physical and ecological processes in aquatic ecosystems.

    KW - Aquatic ecology

    KW - Computer simulation

    KW - Zooplankton

    KW - Ecology

    KW - Western Australia

    KW - Shark Bay

    KW - California

    KW - Mono Lake

    KW - Israel

    KW - Tiberias, Lake

    KW - Limnological study

    M3 - Doctoral Thesis

    ER -