TY - JOUR
T1 - A splice intervention therapy for autosomal recessive juvenile parkinson’s disease arising from parkin mutations
AU - Li, Dunhui
AU - Aung-Htut, May T.
AU - Ham, Kristin A.
AU - Fletcher, Sue
AU - Wilton, Steve D.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Parkin-type autosomal recessive juvenile-onset Parkinson’s disease is caused by mutations in the PRKN gene and accounts for 50% of all autosomal recessive Parkinsonism cases. Parkin is a neuroprotective protein that has dual functions as an E3 ligase in the ubiquitin–proteasome system and as a transcriptional repressor of p53. While genomic deletions of PRKN exon 3 disrupt the mRNA reading frame and result in the loss of functional parkin protein, deletions of both exon 3 and 4 maintain the reading frame and are associated with a later onset, milder disease progression, indicating this particular isoform retains some function. Here, we describe in vitro evaluation of antisense oligomers that restore functional parkin expression in cells derived from a Parkinson’s patient carrying a heterozygous PRKN exon 3 deletion, by inducing exon 4 skipping to correct the reading frame. We show that the induced PRKN transcript is translated into a shorter but semi-functional parkin isoform able to be recruited to depolarised mitochondria, and also transcriptionally represses p53 expression. These results support the potential use of antisense oligomers as a disease-modifying treatment for selected pathogenic PRKN mutations.
AB - Parkin-type autosomal recessive juvenile-onset Parkinson’s disease is caused by mutations in the PRKN gene and accounts for 50% of all autosomal recessive Parkinsonism cases. Parkin is a neuroprotective protein that has dual functions as an E3 ligase in the ubiquitin–proteasome system and as a transcriptional repressor of p53. While genomic deletions of PRKN exon 3 disrupt the mRNA reading frame and result in the loss of functional parkin protein, deletions of both exon 3 and 4 maintain the reading frame and are associated with a later onset, milder disease progression, indicating this particular isoform retains some function. Here, we describe in vitro evaluation of antisense oligomers that restore functional parkin expression in cells derived from a Parkinson’s patient carrying a heterozygous PRKN exon 3 deletion, by inducing exon 4 skipping to correct the reading frame. We show that the induced PRKN transcript is translated into a shorter but semi-functional parkin isoform able to be recruited to depolarised mitochondria, and also transcriptionally represses p53 expression. These results support the potential use of antisense oligomers as a disease-modifying treatment for selected pathogenic PRKN mutations.
KW - Antisense oligonucleotides
KW - Exon skipping
KW - Juvenile-onset Parkinson’s disease
KW - Precision medicine
UR - http://www.scopus.com/inward/record.url?scp=85091950001&partnerID=8YFLogxK
U2 - 10.3390/ijms21197282
DO - 10.3390/ijms21197282
M3 - Article
C2 - 33019779
AN - SCOPUS:85091950001
SN - 1661-6596
VL - 21
SP - 1
EP - 15
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 19
M1 - 7282
ER -