A satellite altimetry data assimilation approach to optimise sea state estimates from vessel motion

Filippo Nelli, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli

Research output: Contribution to journalArticlepeer-review

Abstract

Estimates of directional wave spectra and related parameters can be obtained from ship motion data through the wave-buoy analogy approach. The fundamental input is the response amplitude operator (RAO), which translates ship response into a wave energy spectrum. While ship motion is routinely measured on ocean going vessels, the RAO is not directly available and it is approximated using ship hydrodynamic models. The lack of publicly available details of hull geometry and loading conditions can results in significant inaccuracy of this operator. Considering the reliability of remotely sensed wave height, here we propose an assimilation technique that uses satellite altimeter observations to calibrate the RAO and minimise its uncertainties. The method is applied to estimate sea state conditions during the Antarctic Circumnavigation Expedition by converting motion response of the icebreaker Akademik Tryoshnikov as recorded by the on-board inertial measurement unit. Comparison against concurrent sea state observations obtained from a marine radar device shows a good agreement for a variety of parameters including significant wave height, wave periods and mean wave direction.
Original languageEnglish
Article number103479
JournalApplied Ocean Research
Volume132
DOIs
Publication statusPublished - Mar 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'A satellite altimetry data assimilation approach to optimise sea state estimates from vessel motion'. Together they form a unique fingerprint.

Cite this