A relativistic DFT study of one-bond fluorine-X indirect spin-spin coupling tensors

KW Feindel, RE Wasylishen

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The relativistic zeroth-order regular approximation (ZORA) DFT method was employed to investigate indirect spin-spin coupling tensors involving fluorine, (1)J(X, F). The relative contributions of the mechanisms contributing to (1)J(X, F) are discussed, with special attention paid to the magnitude and origin of the anisotropy in this tensor, DeltaJ. This quantum chemical study demonstrates that, for the systems investigated, the ZORA-DFT method reproduces the magnitude of (1)J(X, F)(iso) and indicates that DeltaJ(X, F) is of the same order of magnitude as (1)J(X, F)(iso). Several examples are provided that demonstrate the importance of considering contributions of DeltaJ to the experimental measurement of effective dipolar coupling constants, R-eff. Given the difficulties with determining DeltaJ experimentally and the promising computational results, we suggest that the quantum chemical calculation of (1)J(X, F) be used as a complementary tool to aid in the analysis of data from NMR experiments designed to measure dipolar coupling constants. Copyright (C) 2004 John Wiley Sons, Ltd.

Original languageEnglish
Pages (from-to)S158-S167
Number of pages10
JournalMagnetic Resonance in Chemistry
Volume42
DOIs
Publication statusPublished - Oct 2004
Externally publishedYes

Cite this