TY - JOUR
T1 - A Numerical Model for Risk of Ball-Impact Injury to Baseball Pitchers
AU - Nicholls, Rochelle
AU - Miller, Karol
AU - Elliott, Bruce
PY - 2005
Y1 - 2005
N2 - Introduction: Metal baseball bats produce higher ball exit velocity (BEV) than wood bats, increasing the risk of impact injuries to infield players. In this paper, maximum BEV from a wood and a metal bat were determined using the finite element method. Methods: Three-dimensional (3-D) bat kinematics at the instant of impact were determined from high-speed videography (N = 17 high-performance batters). A linear viscoelastic constitutive model was developed for stiffer and softer types of baseballs. The risk of impact injury was determined using available movement time data for adult pitchers; the data indicate that 0.400 s is required to evade a batted ball. Results: The highest BEV (61.5 m(.)s(-1)) was obtained from the metal bat and the stiffer ball model, equating to 0.282 s of available movement time. For five impacts along the long axis of each bat, the "best case scenario" resulted from the wood bat and the softer ball (46.0 m(.)s(-1), 0.377 s). Conclusions: The performance difference between the bats was attributed to the preimpact linear velocity of the bat impact point and to differences in orientation on the horizontal plane. Reducing the swing moment of the baseball bat, and the shear and relaxation modulii of the baseball, increased the available movement time.
AB - Introduction: Metal baseball bats produce higher ball exit velocity (BEV) than wood bats, increasing the risk of impact injuries to infield players. In this paper, maximum BEV from a wood and a metal bat were determined using the finite element method. Methods: Three-dimensional (3-D) bat kinematics at the instant of impact were determined from high-speed videography (N = 17 high-performance batters). A linear viscoelastic constitutive model was developed for stiffer and softer types of baseballs. The risk of impact injury was determined using available movement time data for adult pitchers; the data indicate that 0.400 s is required to evade a batted ball. Results: The highest BEV (61.5 m(.)s(-1)) was obtained from the metal bat and the stiffer ball model, equating to 0.282 s of available movement time. For five impacts along the long axis of each bat, the "best case scenario" resulted from the wood bat and the softer ball (46.0 m(.)s(-1), 0.377 s). Conclusions: The performance difference between the bats was attributed to the preimpact linear velocity of the bat impact point and to differences in orientation on the horizontal plane. Reducing the swing moment of the baseball bat, and the shear and relaxation modulii of the baseball, increased the available movement time.
U2 - 10.1249/01.MSS.0000150102.76954.7B
DO - 10.1249/01.MSS.0000150102.76954.7B
M3 - Article
SN - 0195-9131
VL - 37
SP - 30
EP - 38
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 1
ER -