TY - JOUR
T1 - A Novel Dual-Direction SCR Embedded With Segmental and Cross-Bridge Topology for High-Voltage ESD Protection
AU - Liang, Hongji
AU - Cao, Xiyue
AU - Liu, Junliang
AU - Sun, Jun
AU - Liang, Hongji
AU - Xu, Jian
AU - Lei, Wen
AU - Gu, Xiaofeng
PY - 2023/8/1
Y1 - 2023/8/1
N2 - A novel dual-direction silicon-controlled rectifier (DDSCR) embedded with segmental and cross-bridge topology, which is named DDSCRESCT, is proposed and optimized for electrostatic discharge (ESD) protection. By segmenting N+ bridges and inserting a P+ bridge in DDSCR, the trigger voltage of the DDSCRESCT decreases to 10.3 V, which is attributed to the multiple avalanche breakdown effects. By embedding a floating N-type well in DDSCR, the holding voltage of the DDSCRESCT increases to 7.8 V, due to the low current gain of the parasitic bipolar junction transistors. Compared to DDSCR, the leakage current of the DDSCRESCT decreases about one order of magnitude and achieves a large failure current (It2 ) of 3.6 A, resulting from the segmental and cross-bridge topology design. By optimizing the length of the N+ segmental topology and the width of the P+ implanted bridge across the P-type well, the DDSCRESCT exhibits a good clamping ability and a decreased turn-on resistance of 2.1 Ω , resulting in a further ∼ 16.2% increase of It2. The human body model (HBM) test of the DDSCRESCT with a finger width of 100 μ m can reach 4 kV due to the optimized segmental and cross-bridge topology design, which also offers great potential in providing high-voltage ESD protection.
AB - A novel dual-direction silicon-controlled rectifier (DDSCR) embedded with segmental and cross-bridge topology, which is named DDSCRESCT, is proposed and optimized for electrostatic discharge (ESD) protection. By segmenting N+ bridges and inserting a P+ bridge in DDSCR, the trigger voltage of the DDSCRESCT decreases to 10.3 V, which is attributed to the multiple avalanche breakdown effects. By embedding a floating N-type well in DDSCR, the holding voltage of the DDSCRESCT increases to 7.8 V, due to the low current gain of the parasitic bipolar junction transistors. Compared to DDSCR, the leakage current of the DDSCRESCT decreases about one order of magnitude and achieves a large failure current (It2 ) of 3.6 A, resulting from the segmental and cross-bridge topology design. By optimizing the length of the N+ segmental topology and the width of the P+ implanted bridge across the P-type well, the DDSCRESCT exhibits a good clamping ability and a decreased turn-on resistance of 2.1 Ω , resulting in a further ∼ 16.2% increase of It2. The human body model (HBM) test of the DDSCRESCT with a finger width of 100 μ m can reach 4 kV due to the optimized segmental and cross-bridge topology design, which also offers great potential in providing high-voltage ESD protection.
KW - Bipolar junction transistor (BJT)
KW - electrostatic discharge (ESD) protection
KW - latch-up immunity
KW - silicon-controlled rectifier (SCR)
UR - http://www.scopus.com/inward/record.url?scp=85162910284&partnerID=8YFLogxK
U2 - 10.1109/TED.2023.3284416
DO - 10.1109/TED.2023.3284416
M3 - Article
AN - SCOPUS:85162910284
SN - 0018-9383
VL - 70
SP - 4036
EP - 4042
JO - IEEE Transactions on Electron Devices
JF - IEEE Transactions on Electron Devices
IS - 8
ER -