A note on the construction of Hamiltonian trajectories along heteroclinic chains

Luigi Chierchia, Enrico Valdinoci

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

We provide a short, simple proof of the existence of Hamiltonian trajectories arbitrarily close to a given chain of heteroclinic orbits connecting "codimension-one, KAM, whiskered tori".

Original languageEnglish
Pages (from-to)247-255
Number of pages9
JournalForum Mathematicum
Volume12
Issue number2
Publication statusPublished - 1 Dec 2000
Externally publishedYes

Fingerprint

Hamiltonians
Heteroclinic Orbit
Codimension
Torus
Orbits
Trajectories
Trajectory

Cite this

@article{88cba12e222d4c61b62f32d4a6390282,
title = "A note on the construction of Hamiltonian trajectories along heteroclinic chains",
abstract = "We provide a short, simple proof of the existence of Hamiltonian trajectories arbitrarily close to a given chain of heteroclinic orbits connecting {"}codimension-one, KAM, whiskered tori{"}.",
author = "Luigi Chierchia and Enrico Valdinoci",
year = "2000",
month = "12",
day = "1",
language = "English",
volume = "12",
pages = "247--255",
journal = "Forum Mathematicum",
issn = "0933-7741",
publisher = "De Gruyter Mouton",
number = "2",

}

A note on the construction of Hamiltonian trajectories along heteroclinic chains. / Chierchia, Luigi; Valdinoci, Enrico.

In: Forum Mathematicum, Vol. 12, No. 2, 01.12.2000, p. 247-255.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A note on the construction of Hamiltonian trajectories along heteroclinic chains

AU - Chierchia, Luigi

AU - Valdinoci, Enrico

PY - 2000/12/1

Y1 - 2000/12/1

N2 - We provide a short, simple proof of the existence of Hamiltonian trajectories arbitrarily close to a given chain of heteroclinic orbits connecting "codimension-one, KAM, whiskered tori".

AB - We provide a short, simple proof of the existence of Hamiltonian trajectories arbitrarily close to a given chain of heteroclinic orbits connecting "codimension-one, KAM, whiskered tori".

UR - http://www.scopus.com/inward/record.url?scp=0034423992&partnerID=8YFLogxK

M3 - Article

VL - 12

SP - 247

EP - 255

JO - Forum Mathematicum

JF - Forum Mathematicum

SN - 0933-7741

IS - 2

ER -