A new weighted optimal combination of ANNs for catalyst design and reactor operation: Methane steam reforming studies

Viswanathan Arcotumapathy, Arman Siahvashi, Adesoji A. Adesina

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Catalyst design and evaluation is a multifactorial multiobjective optimization problem and the absence of well-defined mechanistic relationships between wide ranging input-output variables has stimulated interest in the application of artificial neural network for the analysis of the large body of empirical data available. However, single ANN models generally have limited predictive capability and insufficient to capture the broad range of features inherent in the voluminous but dispersed data sources. In this study, we have employed a Fibonacci approach to select optimal number of neurons for the ANN architecture followed by a new weighted optimal combination of statistically-derived candidate ANN models in a multierror sense. Data from 200 cases for catalytic methane steam reforming have been used to demonstrate the veracity and robustness of the integrated ANN modeling technique.

Original languageEnglish
Pages (from-to)2412-2427
Number of pages16
JournalAIChE Journal
Volume58
Issue number8
DOIs
Publication statusPublished - 1 Aug 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'A new weighted optimal combination of ANNs for catalyst design and reactor operation: Methane steam reforming studies'. Together they form a unique fingerprint.

Cite this