Abstract
The influence of vegetation canopies on the flow structure in streams, rivers, and floodplains is heavily dependent on the cumulative drag forces exerted by the vegetation. The drag coefficients of vegetation elements within a canopy have been shown to be significantly different from the well-established value for a single element in isolation. This study investigates the mechanisms that determine canopy flow resistance and proposes a new model for predicting canopy drag coefficients. Large Eddy Simulations were used to investigate the fine-scale hydrodynamics within emergent canopies with solid area fractions ( math formula) ranging from 0.016 to 0.25. The influences of three mechanisms in modifying canopy drag, namely, blockage, sheltering, and delayed separation, were investigated. While the effects of sheltering and delayed separation were found to slightly reduce the drag of very sparse canopies, the blockage effect significantly increased the drag of denser canopies ( math formula). An analogy between canopy flow and wall-confined flow around bluff bodies is used to identify an alternative reference velocity in the definition of the canopy drag coefficient; namely, the constricted cross-section velocity (Uc). Through comparison with both prior experimental data and the present numerical simulations, typical formulations for the drag coefficient of a single cylinder are shown to accurately predict the drag coefficient of staggered emergent canopies when math formula is used as the reference velocity. Finally, it is shown that this new model can be extended to predict the bulk drag coefficient of randomly arranged vegetation canopies.
Original language | English |
---|---|
Pages (from-to) | 3179-3196 |
Number of pages | 18 |
Journal | Water Resources Research |
Volume | 53 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2017 |