TY - JOUR
T1 - A new construction method of N-dimensional discrete sine hyperchaotic map
AU - Wang, Mengjiao
AU - Ding, Jie
AU - Zhang, Xinan
AU - Iu, Herbert Ho Ching
AU - Li, Zhijun
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature B.V. 2024.
PY - 2024/9/18
Y1 - 2024/9/18
N2 - This paper presents a new method for constructing N-dimensional discrete sine hyperchaotic maps (NSHMs). This method can efficiently generate different hyperchaotic maps with arbitrary dimensions by designing different seed functions and different system dimensions. By this method, we constructed three different sub-maps, namely a 2-dimensional discrete sine hyperchaotic map (2SHM), a 4-dimensional discrete sine hyperchaotic map (4SHM) and a 6-dimensional discrete sine hyperchaotic map (6SHM). These three sub-maps not only have simple structures, but also possess complex dynamical behaviors, such as initial-boosting behaviors, large Lyapunov exponents (LLEs), and ultra-wide non-degenerate hyperchaotic parameter range (UHPR). In addition, we also conducted spectral entropy (SE) complexity analysis and National Institute of Standards and Technology (NIST) tests on these three sub-maps. Finally, the three sub-maps were implemented using the STM32 hardware platform.
AB - This paper presents a new method for constructing N-dimensional discrete sine hyperchaotic maps (NSHMs). This method can efficiently generate different hyperchaotic maps with arbitrary dimensions by designing different seed functions and different system dimensions. By this method, we constructed three different sub-maps, namely a 2-dimensional discrete sine hyperchaotic map (2SHM), a 4-dimensional discrete sine hyperchaotic map (4SHM) and a 6-dimensional discrete sine hyperchaotic map (6SHM). These three sub-maps not only have simple structures, but also possess complex dynamical behaviors, such as initial-boosting behaviors, large Lyapunov exponents (LLEs), and ultra-wide non-degenerate hyperchaotic parameter range (UHPR). In addition, we also conducted spectral entropy (SE) complexity analysis and National Institute of Standards and Technology (NIST) tests on these three sub-maps. Finally, the three sub-maps were implemented using the STM32 hardware platform.
KW - Extreme multistability
KW - Hyperchaos
KW - N-dimensional map
KW - Ultra-wide non-degenerate hyperchaos parameter range
UR - http://www.scopus.com/inward/record.url?scp=85204308121&partnerID=8YFLogxK
U2 - 10.1007/s11071-024-10299-2
DO - 10.1007/s11071-024-10299-2
M3 - Article
AN - SCOPUS:85204308121
SN - 0924-090X
VL - 113
SP - 1879
EP - 1893
JO - Nonlinear Dynamics
JF - Nonlinear Dynamics
IS - 2
ER -