A Memristive Synapse Control Method to Generate Diversified Multi-Structure Chaotic Attractors

Hairong Lin, Chunhua Wang, Cong Xu, Xin Zhang, Herbert H.C. Iu

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Due to the synapse-like nonlinearity and memory characteristics, memristor is often used to construct memristive neural networks with complex dynamical behaviors. However, memristive neural networks with multi-structure chaotic attractors have not been found yet. In this paper, a novel method for designing multi-structure chaotic attractors in memristive neural networks is proposed. By utilizing a multi-piecewise memristive synapse control in a Hopfield neural network (HNN), various complex multi-structure chaotic attractors can be produced. Theoretical analysis and numerical simulation demonstrate that multiple multi-structure chaotic attractors with different topologies can be generated by conducting the memristive synapse-control in different synaptic coupling positions. Differing from traditional multi-scroll attractors, the generated multi-structure attractors contain multiple irregular shapes instead of simple scrolls. Meanwhile, the number of structures can be easily controlled with the memristor control parameters. Furthermore, we design a module-based analog memristive neural network circuit and the arbitrary number of multi-structure attractors can be obtained by selecting corresponding control voltages. Finally, based on the memristive HNNs, a novel image encryption cryptosystem with a permutation-diffusion structure is designed and evaluated, exhibiting its excellent encryption performances, especially the extremely high key sensitivity.
Original languageEnglish
Pages (from-to)942-955
Number of pages14
JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Issue number3
Early online date27 Jun 2022
Publication statusPublished - Mar 2023


Dive into the research topics of 'A Memristive Synapse Control Method to Generate Diversified Multi-Structure Chaotic Attractors'. Together they form a unique fingerprint.

Cite this