Projects per year
Abstract
Background: Metabolic ageing biomarkers may capture the age-related shifts in metabolism, offering a precise representation of an individual's overall metabolic health. Methods: Utilising comprehensive lipidomic datasets from two large independent population cohorts in Australia (n = 14,833, including 6630 males, 8203 females), we employed different machine learning models, to predict age, and calculated metabolic age scores (mAge). Furthermore, we defined the difference between mAge and age, termed mAgeΔ, which allow us to identify individuals sharing similar age but differing in their metabolic health status. Findings: Upon stratification of the population into quintiles by mAgeΔ, we observed that participants in the top quintile group (Q5) were more likely to have cardiovascular disease (OR = 2.13, 95% CI = 1.62–2.83), had a 2.01-fold increased risk of 12-year incident cardiovascular events (HR = 2.01, 95% CI = 1.45–2.57), and a 1.56-fold increased risk of 17-year all-cause mortality (HR = 1.56, 95% CI = 1.34–1.79), relative to the individuals in the bottom quintile group (Q1). Survival analysis further revealed that men in the Q5 group faced the challenge of reaching a median survival rate due to cardiovascular events more than six years earlier and reaching a median survival rate due to all-cause mortality more than four years earlier than men in the Q1 group. Interpretation: Our findings demonstrate that the mAge score captures age-related metabolic changes, predicts health outcomes, and has the potential to identify individuals at increased risk of metabolic diseases. Funding: The specific funding of this article is provided in the acknowledgements section.
Original language | English |
---|---|
Article number | 105199 |
Number of pages | 18 |
Journal | EBioMedicine |
Volume | 105 |
Early online date | 20 Jun 2024 |
DOIs | |
Publication status | Published - Jul 2024 |
Fingerprint
Dive into the research topics of 'A lipidomic based metabolic age score captures cardiometabolic risk independent of chronological age'. Together they form a unique fingerprint.Projects
- 1 Curtailed
-
The Busselton Family Heart Study
Moses, E. (Investigator 01), Meikle, P. (Investigator 02), Blangero, J. (Investigator 03), Melton, P. (Investigator 04), Hung, J. (Investigator 05), Beilby, J. (Investigator 06), Cadby, G. (Investigator 07), Dubé, M. P. (Investigator 08), Van Bockxmeer, F. (Investigator 09) & Watts, G. (Investigator 10)
NHMRC National Health and Medical Research Council
1/01/16 → 9/10/20
Project: Research