TY - JOUR

T1 - A hemisystem of a nonclassical generalised quadrangle

AU - Bamberg, John

AU - De Clerck, F

AU - Durante, N

PY - 2009

Y1 - 2009

N2 - The concept of a hemisystem of a generalised quadrangle has its roots in the work of B. Segre, and this term is used here to denote a set of points H such that every line l meets H in half of the points of l. If one takes the point-line geometry on the points of the hemisystem, then one obtains a partial quadrangle and hence a strongly regular point graph. The only previously known hemisystems of generalised quadrangles of order (q, q (2)) were those of the elliptic quadric Q(-)(5, q) , q odd. We show in this paper that there exists a hemisystem of the Fisher-Thas-Walker-Kantor generalised quadrangle of order (5, 5(2)), which leads to a new partial quadrangle. Moreover, we can construct from our hemisystem the 3 . A (7)-hemisystem of Q-(5, 5), first constructed by Cossidente and Penttila.

AB - The concept of a hemisystem of a generalised quadrangle has its roots in the work of B. Segre, and this term is used here to denote a set of points H such that every line l meets H in half of the points of l. If one takes the point-line geometry on the points of the hemisystem, then one obtains a partial quadrangle and hence a strongly regular point graph. The only previously known hemisystems of generalised quadrangles of order (q, q (2)) were those of the elliptic quadric Q(-)(5, q) , q odd. We show in this paper that there exists a hemisystem of the Fisher-Thas-Walker-Kantor generalised quadrangle of order (5, 5(2)), which leads to a new partial quadrangle. Moreover, we can construct from our hemisystem the 3 . A (7)-hemisystem of Q-(5, 5), first constructed by Cossidente and Penttila.

U2 - 10.1007/s10623-008-9251-1

DO - 10.1007/s10623-008-9251-1

M3 - Article

VL - 51

SP - 157

EP - 165

JO - Designs Codes and Cryptography

JF - Designs Codes and Cryptography

SN - 0925-1022

IS - 2

ER -