A gravitational-wave standard siren measurement of the Hubble constant

Las Cumbres Observatory Collaboration, VINRO UGE Collaboration, MASTER Collaboration, ligo Scientific Collaboration, Virgo Collaboration, 1M2H Collaboration, Dark Energy Camera GW-EM Collaboration, DES Collaboration, DLT40 Collaboration

    Research output: Contribution to journalArticle

    156 Citations (Scopus)

    Abstract

    On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source4-6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20,21, while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision.

    Original languageEnglish
    Pages (from-to)85-98
    Number of pages14
    JournalNature
    Volume551
    Issue number7678
    DOIs
    Publication statusPublished - 2 Nov 2017

    Fingerprint

    Sirens
    Gravity waves
    Cosmology
    Distance measurement
    Galaxies
    Astronomy
    Ladders
    Electromagnetic waves
    Stars
    Luminance
    Neutrons
    Detectors

    Cite this

    Las Cumbres Observatory Collaboration, VINRO UGE Collaboration, MASTER Collaboration, ligo Scientific Collaboration, Virgo Collaboration, 1M2H Collaboration, ... DLT40 Collaboration (2017). A gravitational-wave standard siren measurement of the Hubble constant. Nature, 551(7678), 85-98. https://doi.org/10.1038/nature24471
    Las Cumbres Observatory Collaboration ; VINRO UGE Collaboration ; MASTER Collaboration ; ligo Scientific Collaboration ; Virgo Collaboration ; 1M2H Collaboration ; Dark Energy Camera GW-EM Collaboration ; DES Collaboration ; DLT40 Collaboration. / A gravitational-wave standard siren measurement of the Hubble constant. In: Nature. 2017 ; Vol. 551, No. 7678. pp. 85-98.
    @article{4d49d9f8a50141a6832ae0ef4f93ee1d,
    title = "A gravitational-wave standard siren measurement of the Hubble constant",
    abstract = "On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source4-6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20,21, while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision.",
    author = "{Las Cumbres Observatory Collaboration} and {VINRO UGE Collaboration} and {MASTER Collaboration} and {ligo Scientific Collaboration} and {Virgo Collaboration} and {1M2H Collaboration} and {Dark Energy Camera GW-EM Collaboration} and {DES Collaboration} and {DLT40 Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and T. Adams and B. Allen and G. Allen and Anderson, {S. B.} and Anderson, {W. G.} and Aston, {S. M.} and C. Austin and Bader, {M. K.M.} and J. Bartlett and C. Beer and Bell, {A. S.} and Berry, {C. P.L.} and Bilenko, {I. A.} and J. Blackman and Blair, {C. D.} and Blair, {D. G.} and M. Boer and S. Bose and Brady, {P. R.} and Brooks, {A. F.} and Brown, {D. D.} and Brown, {D. D.} and Buchanan, {C. C.} and H. Cao and J. Cao and M. Chan and Chen, {H. Y.} and X. Chen and Y. Chen and Cheng, {H. P.} and H. Chia and Q. Chu and Chua, {A. J.K.} and S. Chua and Chung, {A. K.W.} and S. Chung and Clark, {J. A.} and D. Cohen and Cooper, {S. J.} and Costa, {C. A.} and Cowan, {E. E.} and Coward, {D. M.} and A. Cumming and L. Cunningham and Danilishin, {S. L.} and D. Davis and J. Degallaix and R. Douglas and Dwyer, {S. E.} and Edwards, {M. C.} and A. Effler and M. Evans and Evans, {T. M.} and X. Fan and Farr, {W. M.} and Fisher, {R. P.} and M. Fletcher and Forsyth, {P. W.F.} and Ganija, {M. R.} and D. George and J. George and S. Ghosh and L. Glover and S. Gras and C. Gray and Green, {A. C.} and X. Guo and A. Gupta and Gupta, {M. K.} and Hall, {E. D.} and Hamilton, {E. Z.} and G. Hammond and J. Hanson and Hart, {M. J.} and Heng, {I. S.} and K. Holt and P. Hopkins and Houston, {E. A.} and Howell, {E. J.} and Hu, {Y. M.} and Iyer, {B. R.} and Johnson, {W. W.} and Jones, {D. I.} and R. Jones and L. Ju and G. Kang and R. Kennedy and Key, {J. S.} and I. Khan and S. Khan and Z. Khan and Chunglee Kim and Kim, {J. C.} and K. Kim and Kim, {Y. M.} and King, {E. J.} and King, {P. J.} and Knowles, {T. D.} and P. Kumar and R. Kumar and S. Kumar and L. Kuo and S. Kwang and Lai, {K. H.} and Lang, {R. N.} and J. Lange and Lasky, {P. D.} and Lee, {C. H.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and K. Lee and Li, {T. G.F.} and J. Liu and X. Liu and R. Lynch and Y. Ma and Macleod, {D. M.} and Magee, {R. M.} and N. Man and Martin, {R. M.} and K. Mason and R. McCarthy and McClelland, {D. E.} and McGuire, {S. C.} and G. McIntyre and McManus, {D. J.} and T. McRae and McWilliams, {S. T.} and H. Miao and H. Middleton and Miller, {A. L.} and Miller, {B. B.} and J. Miller and S. Mitra and Moore, {C. J.} and Muir, {A. W.} and S. Mukherjee and Murray, {P. G.} and K. Napier and Ng, {K. K.Y.} and Nguyen, {T. T.} and D. Nichols and Oh, {S. H.} and M. Oliver and Ottaway, {D. J.} and J. Page and Page, {M. A.} and B. Pang and W. Parker and J. Powell and Pratt, {J. W.W.} and J. Read and S. Reid and W. Ren and Robertson, {N. A.} and R. Romano and Ross, {M. P.} and K. Ryan and Sanders, {J. R.} and Savage, {R. L.} and J. Schmidt and J. Scott and Scott, {S. M.} and Shah, {A. A.} and A. Singh and Slagmolen, {B. J.J.} and B. Smith and Smith, {J. R.} and Smith, {R. J.E.} and Spencer, {A. P.} and Srivastava, {A. K.} and Stevenson, {S. P.} and R. Stone and Strigin, {S. E.} and L. Sun and Sutton, {P. J.} and C. Talbot and Taylor, {J. A.} and R. Taylor and Thomas, {E. G.} and M. Thomas and P. Thomas and S. Tiwari and M. Tse and {Van Heijningen}, {J. V.} and Veitch, {P. J.} and Vine, {D. J.} and Vyatchanin, {S. P.} and Wade, {L. E.} and M. Walker and L. Wallace and S. Walsh and G. Wang and H. Wang and Wang, {J. Z.} and Wang, {W. H.} and Wang, {Y. F.} and Ward, {R. L.} and J. Warner and Wei, {L. W.} and Weinstein, {A. J.} and R. Weiss and L. Wen and Whelan, {J. T.} and Whitcomb, {S. E.} and D. Williams and Williams, {R. D.} and Williamson, {A. R.} and Willis, {J. L.} and Wong, {K. W.K.} and Wright, {J. L.} and Wu, {D. S.} and Wysocki, {D. M.} and S. Xiao and H. Yamamoto and L. Yang and Yap, {M. J.} and Hang Yu and Haocun Yu and L. Zhang and M. Zhang and T. Zhang and Zhang, {Y. H.} and C. Zhao and M. Zhou and Z. Zhou and Zhu, {S. J.} and Zhu, {X. J.} and Pan, {Y. C.} and Butler, {R. E.} and Cook, {E. R.} and Marshall, {J. L.} and N. Smith and D. Brooks and K. Kuehn and Miller, {C. J.} and M. Smith and D. Thomas and Thomas, {R. C.} and S. Yang and Evans, {P. A.} and P. O'Brien and D. Watson",
    year = "2017",
    month = "11",
    day = "2",
    doi = "10.1038/nature24471",
    language = "English",
    volume = "551",
    pages = "85--98",
    journal = "Nature",
    issn = "0028-0836",
    publisher = "Nature Publishing Group - Macmillan Publishers",
    number = "7678",

    }

    Las Cumbres Observatory Collaboration, VINRO UGE Collaboration, MASTER Collaboration, ligo Scientific Collaboration, Virgo Collaboration, 1M2H Collaboration, Dark Energy Camera GW-EM Collaboration, DES Collaboration & DLT40 Collaboration 2017, 'A gravitational-wave standard siren measurement of the Hubble constant' Nature, vol. 551, no. 7678, pp. 85-98. https://doi.org/10.1038/nature24471

    A gravitational-wave standard siren measurement of the Hubble constant. / Las Cumbres Observatory Collaboration; VINRO UGE Collaboration; MASTER Collaboration; ligo Scientific Collaboration; Virgo Collaboration; 1M2H Collaboration; Dark Energy Camera GW-EM Collaboration; DES Collaboration; DLT40 Collaboration.

    In: Nature, Vol. 551, No. 7678, 02.11.2017, p. 85-98.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - A gravitational-wave standard siren measurement of the Hubble constant

    AU - Las Cumbres Observatory Collaboration

    AU - VINRO UGE Collaboration

    AU - MASTER Collaboration

    AU - ligo Scientific Collaboration

    AU - Virgo Collaboration

    AU - 1M2H Collaboration

    AU - Dark Energy Camera GW-EM Collaboration

    AU - DES Collaboration

    AU - DLT40 Collaboration

    AU - Abbott, B. P.

    AU - Abbott, R.

    AU - Abbott, T. D.

    AU - Acernese, F.

    AU - Ackley, K.

    AU - Adams, C.

    AU - Adams, T.

    AU - Allen, B.

    AU - Allen, G.

    AU - Anderson, S. B.

    AU - Anderson, W. G.

    AU - Aston, S. M.

    AU - Austin, C.

    AU - Bader, M. K.M.

    AU - Bartlett, J.

    AU - Beer, C.

    AU - Bell, A. S.

    AU - Berry, C. P.L.

    AU - Bilenko, I. A.

    AU - Blackman, J.

    AU - Blair, C. D.

    AU - Blair, D. G.

    AU - Boer, M.

    AU - Bose, S.

    AU - Brady, P. R.

    AU - Brooks, A. F.

    AU - Brown, D. D.

    AU - Brown, D. D.

    AU - Buchanan, C. C.

    AU - Cao, H.

    AU - Cao, J.

    AU - Chan, M.

    AU - Chen, H. Y.

    AU - Chen, X.

    AU - Chen, Y.

    AU - Cheng, H. P.

    AU - Chia, H.

    AU - Chu, Q.

    AU - Chua, A. J.K.

    AU - Chua, S.

    AU - Chung, A. K.W.

    AU - Chung, S.

    AU - Clark, J. A.

    AU - Cohen, D.

    AU - Cooper, S. J.

    AU - Costa, C. A.

    AU - Cowan, E. E.

    AU - Coward, D. M.

    AU - Cumming, A.

    AU - Cunningham, L.

    AU - Danilishin, S. L.

    AU - Davis, D.

    AU - Degallaix, J.

    AU - Douglas, R.

    AU - Dwyer, S. E.

    AU - Edwards, M. C.

    AU - Effler, A.

    AU - Evans, M.

    AU - Evans, T. M.

    AU - Fan, X.

    AU - Farr, W. M.

    AU - Fisher, R. P.

    AU - Fletcher, M.

    AU - Forsyth, P. W.F.

    AU - Ganija, M. R.

    AU - George, D.

    AU - George, J.

    AU - Ghosh, S.

    AU - Glover, L.

    AU - Gras, S.

    AU - Gray, C.

    AU - Green, A. C.

    AU - Guo, X.

    AU - Gupta, A.

    AU - Gupta, M. K.

    AU - Hall, E. D.

    AU - Hamilton, E. Z.

    AU - Hammond, G.

    AU - Hanson, J.

    AU - Hart, M. J.

    AU - Heng, I. S.

    AU - Holt, K.

    AU - Hopkins, P.

    AU - Houston, E. A.

    AU - Howell, E. J.

    AU - Hu, Y. M.

    AU - Iyer, B. R.

    AU - Johnson, W. W.

    AU - Jones, D. I.

    AU - Jones, R.

    AU - Ju, L.

    AU - Kang, G.

    AU - Kennedy, R.

    AU - Key, J. S.

    AU - Khan, I.

    AU - Khan, S.

    AU - Khan, Z.

    AU - Kim, Chunglee

    AU - Kim, J. C.

    AU - Kim, K.

    AU - Kim, Y. M.

    AU - King, E. J.

    AU - King, P. J.

    AU - Knowles, T. D.

    AU - Kumar, P.

    AU - Kumar, R.

    AU - Kumar, S.

    AU - Kuo, L.

    AU - Kwang, S.

    AU - Lai, K. H.

    AU - Lang, R. N.

    AU - Lange, J.

    AU - Lasky, P. D.

    AU - Lee, C. H.

    AU - Lee, H. K.

    AU - Lee, H. M.

    AU - Lee, H. W.

    AU - Lee, K.

    AU - Li, T. G.F.

    AU - Liu, J.

    AU - Liu, X.

    AU - Lynch, R.

    AU - Ma, Y.

    AU - Macleod, D. M.

    AU - Magee, R. M.

    AU - Man, N.

    AU - Martin, R. M.

    AU - Mason, K.

    AU - McCarthy, R.

    AU - McClelland, D. E.

    AU - McGuire, S. C.

    AU - McIntyre, G.

    AU - McManus, D. J.

    AU - McRae, T.

    AU - McWilliams, S. T.

    AU - Miao, H.

    AU - Middleton, H.

    AU - Miller, A. L.

    AU - Miller, B. B.

    AU - Miller, J.

    AU - Mitra, S.

    AU - Moore, C. J.

    AU - Muir, A. W.

    AU - Mukherjee, S.

    AU - Murray, P. G.

    AU - Napier, K.

    AU - Ng, K. K.Y.

    AU - Nguyen, T. T.

    AU - Nichols, D.

    AU - Oh, S. H.

    AU - Oliver, M.

    AU - Ottaway, D. J.

    AU - Page, J.

    AU - Page, M. A.

    AU - Pang, B.

    AU - Parker, W.

    AU - Powell, J.

    AU - Pratt, J. W.W.

    AU - Read, J.

    AU - Reid, S.

    AU - Ren, W.

    AU - Robertson, N. A.

    AU - Romano, R.

    AU - Ross, M. P.

    AU - Ryan, K.

    AU - Sanders, J. R.

    AU - Savage, R. L.

    AU - Schmidt, J.

    AU - Scott, J.

    AU - Scott, S. M.

    AU - Shah, A. A.

    AU - Singh, A.

    AU - Slagmolen, B. J.J.

    AU - Smith, B.

    AU - Smith, J. R.

    AU - Smith, R. J.E.

    AU - Spencer, A. P.

    AU - Srivastava, A. K.

    AU - Stevenson, S. P.

    AU - Stone, R.

    AU - Strigin, S. E.

    AU - Sun, L.

    AU - Sutton, P. J.

    AU - Talbot, C.

    AU - Taylor, J. A.

    AU - Taylor, R.

    AU - Thomas, E. G.

    AU - Thomas, M.

    AU - Thomas, P.

    AU - Tiwari, S.

    AU - Tse, M.

    AU - Van Heijningen, J. V.

    AU - Veitch, P. J.

    AU - Vine, D. J.

    AU - Vyatchanin, S. P.

    AU - Wade, L. E.

    AU - Walker, M.

    AU - Wallace, L.

    AU - Walsh, S.

    AU - Wang, G.

    AU - Wang, H.

    AU - Wang, J. Z.

    AU - Wang, W. H.

    AU - Wang, Y. F.

    AU - Ward, R. L.

    AU - Warner, J.

    AU - Wei, L. W.

    AU - Weinstein, A. J.

    AU - Weiss, R.

    AU - Wen, L.

    AU - Whelan, J. T.

    AU - Whitcomb, S. E.

    AU - Williams, D.

    AU - Williams, R. D.

    AU - Williamson, A. R.

    AU - Willis, J. L.

    AU - Wong, K. W.K.

    AU - Wright, J. L.

    AU - Wu, D. S.

    AU - Wysocki, D. M.

    AU - Xiao, S.

    AU - Yamamoto, H.

    AU - Yang, L.

    AU - Yap, M. J.

    AU - Yu, Hang

    AU - Yu, Haocun

    AU - Zhang, L.

    AU - Zhang, M.

    AU - Zhang, T.

    AU - Zhang, Y. H.

    AU - Zhao, C.

    AU - Zhou, M.

    AU - Zhou, Z.

    AU - Zhu, S. J.

    AU - Zhu, X. J.

    AU - Pan, Y. C.

    AU - Butler, R. E.

    AU - Cook, E. R.

    AU - Marshall, J. L.

    AU - Smith, N.

    AU - Brooks, D.

    AU - Kuehn, K.

    AU - Miller, C. J.

    AU - Smith, M.

    AU - Thomas, D.

    AU - Thomas, R. C.

    AU - Yang, S.

    AU - Evans, P. A.

    AU - O'Brien, P.

    AU - Watson, D.

    PY - 2017/11/2

    Y1 - 2017/11/2

    N2 - On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source4-6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20,21, while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision.

    AB - On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source4-6. This sky region was subsequently observed by optical astronomy facilities7, resulting in the identification8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren'14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder'19: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements20,21, while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision.

    UR - http://www.scopus.com/inward/record.url?scp=85033578549&partnerID=8YFLogxK

    U2 - 10.1038/nature24471

    DO - 10.1038/nature24471

    M3 - Article

    VL - 551

    SP - 85

    EP - 98

    JO - Nature

    JF - Nature

    SN - 0028-0836

    IS - 7678

    ER -

    Las Cumbres Observatory Collaboration, VINRO UGE Collaboration, MASTER Collaboration, ligo Scientific Collaboration, Virgo Collaboration, 1M2H Collaboration et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature. 2017 Nov 2;551(7678):85-98. https://doi.org/10.1038/nature24471