A Geometric model of arbitrary spin massive particle

Sergei M Kuzenko, S.L. Lyakhovich, A. Yu. Segal

Research output: Contribution to journalArticlepeer-review


A new model of the relativistic massive particle with arbitrary spin [the (m, s) particle] is suggested. The configuration space of the model is the product of Minkowski space and a two-dimensional sphere: ℳ6=ℝ3, 1×S2. The system describes Zitterbevegung at the classical level. Together with explicitly realized Poincare symmetry, the action functional turns out to be invariant under two types of gauge transformations having their origin in the presence of two Abelian first class constraints in the Hamilton formalism. These constraints correspond to strong conservation for the phase space counterparts of the Casimir operators of the Poincaré group. Canonical quantization of the model leads to equations on the wave functions which prove to be equivalent to the relativistic wave equations for the massive spin s field.
Original languageEnglish
Pages (from-to)1529-1552
JournalInternational Journal of Modern Physics A
Issue number10
Publication statusPublished - 1995


Dive into the research topics of 'A Geometric model of arbitrary spin massive particle'. Together they form a unique fingerprint.

Cite this