Abstract
In this paper, we present a finite volume method for a two-dimensional Black-Scholes equation with stochastic volatility governing European option pricing. In this work, we first formulate the Black-Scholes equation with a tensor (or matrix) diffusion coefficient into a conservative form. We then present a finite volume method for the resulting equation, based on a fitting technique proposed for a one-dimensional Black-Scholes equation. We show that the method is monotone by proving that the system matrix of the discretized equation is an M-matrix. Numerical experiments, performed to demonstrate the usefulness of the method, will be presented.
Original language | English |
---|---|
Pages (from-to) | 297-320 |
Journal | Computing |
Volume | 77 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2006 |