A Faster Algorithm for Calculating Hypervolume

Lyndon While, P. Hingston, Luigi Barone, S. Huband

Research output: Contribution to journalArticlepeer-review

704 Citations (Scopus)


We present an algorithm for calculating hypervolume exactly, the Hypervolume by Slicing Objectives (HSO) algorithm, that is faster than any that has previously been published. HSO processes objectives instead of points, an idea that has been considered before but that has never been properly evaluated in the literature. We show that both previously studied exact hypervolume algorithms are exponential in at least the number of objectives and that although HSO is also exponential in the number of objectives in the worst case, it runs in significantly less time, i.e., two to three orders of magnitude less for randomly generated and benchmark data in three to eight objectives. Thus, HSO increases the utility of hypervolume, both as a metric for general optimization algorithms and as a diversity mechanism for evolutionary algorithms.
Original languageEnglish
Pages (from-to)29-38
JournalIEEE Transactions on Evolutionary Computation
Issue number1
Publication statusPublished - 2006


Dive into the research topics of 'A Faster Algorithm for Calculating Hypervolume'. Together they form a unique fingerprint.

Cite this