Projects per year
Abstract
Modeling seepage problems in rock fractures is an interesting research approach to evaluating rock slope instability that is attracting increasing attention. In the present study, a coupled seepage–deformation model based on the numerical manifold method (NMM) is proposed, and the flow of groundwater in a fracture network coupled with the effects of seepage pressure and rock deformation are discussed. A global equilibrium equation of the system and a local factor of safety (FoS) of arbitrary rock fractures are derived based on the principle of minimum energy, and a series of verification examples are calculated. The simulation results show the robustness and effectiveness of the proposed numerical model. Finally, a rock slope collapse accident caused by seepage effects is simulated by the proposed method, and the failure process of the slope is reproduced. The simulation results show that excessive hydraulic pressure caused the vertical fractures to open and augmented the rock mass deformation, eventually leading to the failure of the slope. The proposed method possesses the potential to simulate larger-scale engineering problems.
Original language | English |
---|---|
Article number | 1163 |
Number of pages | 23 |
Journal | Water (Switzerland) |
Volume | 15 |
Issue number | 6 |
DOIs | |
Publication status | Published - 17 Mar 2023 |
Fingerprint
Dive into the research topics of 'A Coupled Seepage–Deformation Model for Simulating the Effect of Fracture Seepage on Rock Slope Stability Using the Numerical Manifold Method'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Constricted hydraulic fracture opening
Dyskin, A. (Investigator 01), Pasternak, E. (Investigator 02), Gurevich, B. (Investigator 03), Lebedev, M. (Investigator 04), Bunger, A. (Investigator 05) & Shapiro, S. (Investigator 06)
ARC Australian Research Council
6/06/19 → 31/12/24
Project: Research