A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods

Yanling Ding, Hongyan Zhang, Zhongqiang Wang, Qiaoyun Xie, Yeqiao Wang, Lin Liu, Christopher C. Hall

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Quantifying crop residue cover (CRC) on field surfaces is important for monitoring the tillage intensity and promoting sustainable management. Remote-sensing-based techniques have proven practical for determining CRC, however, the methods used are primarily limited to empirical regression based on crop residue indices (CRIs). This study provides a systematic evaluation of empirical regressions and machine learning (ML) algorithms based on their ability to estimate CRC using Sentinel-2 Multispectral Instrument (MSI) data. Unmanned aerial vehicle orthomosaics were used to extracted ground CRC for training Sentinel-2 data-based CRC models. For empirical regression, nine MSI bands, 10 published CRIs, three proposed CRIs, and four mean textural features were evaluated using univariate linear regression. The best performance was obtained by a three-band index calculated using (B2-B4)/(B2-B12), with an R2cv of 0.63 and RMSEcv of 6.509%, using a 10-fold cross-validation. The methodologies of partial least squares regression (PLSR), artificial neural network (ANN), Gaussian process regression (GPR), support vector regression (SVR), and random forest (RF) were compared with four groups of predictors, including nine MSI bands, 13 CRIs, a combination of MSI bands and mean textural features, and a combination of CRIs and textural features. In general, ML approaches achieved high accuracy. A PLSR model with 13 CRIs and textural features resulted in an accuracy of R2cv = 0.66 and RMSEcv = 6.427%. An RF model with predictors of MSI bands and textural features estimated CRC with an R2cv = 0.61 and RMSEcv = 6.415%. The estimation was improved by an SVR model with the same input predictors (R2cv = 0.67, RMSEcv = 6.343%), followed by a GPR model based on CRIs and textural features. The performance of GPR models was further improved by optimal input variables. A GPR model with six input variables, three MSI bands and three textural features, performed the best, with R2cv = 0.69 and RMSEcv = 6.149%. This study provides a reference for estimating CRC from Sentinel-2 imagery using ML approaches. The GPR approach is recommended. A combination of spectral information and textural features leads to an improvement in the retrieval of CRC.

Original languageEnglish
Article number1470
JournalRemote Sensing
Volume12
Issue number9
DOIs
Publication statusPublished - 1 May 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods'. Together they form a unique fingerprint.

Cite this