A community effort to assess and improve drug sensitivity prediction algorithms

NCI-DREAM Community, James C. Costello, Laura M. Heiser, Elisabeth Georgii, Mehmet Gönen, Michael P. Menden, Nicholas J. Wang, Mukesh Bansal, Muhammad Ammad-Ud-Din, Petteri Hintsanen, Suleiman A. Khan, John Patrick Mpindi, Olli Kallioniemi, Antti Honkela, Tero Aittokallio, Krister Wennerberg, James J. Collins, Dan Gallahan, Dinah Singer, Julio Saez-RodriguezSamuel Kaski, Joe W. Gray, Gustavo Stolovitzky, Jean Paul Abbuehl, Jeffrey Allen, Russ B. Altman, Shawn Balcome, Alexis Battle, Andreas Bender, Bonnie Berger, Jonathan Bernard, Madhuchhanda Bhattacharjee, Krithika Bhuvaneshwar, Andrew A. Bieberich, Fred Boehm, Andrea Califano, Christina Chan, Beibei Chen, Ting Huei Chen, Jaejoon Choi, Luis Pedro Coelho, Thomas Cokelaer, James C. Collins, Chad J. Creighton, Jike Cui, Will Dampier, V. Jo Davisson, Bernard De Baets, Raamesh Deshpande, Barbara DiCamillo, Murat Dundar, Zhana Duren, Adam Ertel, Haoyang Fan, Hongbin Fang, Robinder Gauba, Assaf Gottlieb, Michael Grau, Yuriy Gusev, Min Jin Ha, Leng Han, Michael Harris, Nicholas Henderson, Hussein A. Hejase, Krisztian Homicsko, Jack P. Hou, Woochang Hwang, Adriaan P. IJzerman, Bilge Karacali, Sunduz Keles, Christina Kendziorski, Junho Kim, Min Kim, Youngchul Kim, David A. Knowles, Daphne Koller, Junehawk Lee, Jae K. Lee, Eelke B. Lenselink, Biao Li, Bin Li, Jun Li, Han Liang, Jian Ma, Subha Madhavan, Sean Mooney, Chad L. Myers, Michael A. Newton, John P. Overington, Ranadip Pal, Jian Peng, Richard Pestell, Robert J. Prill, Peng Qiu, Bartek Rajwa, Anguraj Sadanandam, Francesco Sambo, Hyunjin Shin, Jiuzhou Song, Lei Song, Arvind Sridhar, Michiel Stock, Wei Sun, Tram Ta, Mahlet Tadesse, Ming Tan, Hao Tang, Dan Theodorescu, Gianna Maria Toffolo, Aydin Tozeren, William Trepicchio, Nelle Varoquaux, Jean Philippe Vert, Willem Waegeman, Thomas Walter, Qian Wan, Difei Wang, Wen Wang, Yong Wang, Zhishi Wang, Joerg K. Wegner, Tongtong Wu, Tian Xia, Guanghua Xiao, Yang Xie, Yanxun Xu, Jichen Yang, Yuan Yuan, Shihua Zhang, Xiang Sun Zhang, Junfei Zhao, Chandler Zuo, Herman W.T. Van Vlijmen, Gerard J.P. Van Westen

Research output: Contribution to journalArticlepeer-review

565 Citations (Scopus)

Abstract

Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

Original languageEnglish
Pages (from-to)1202-1212
Number of pages11
JournalNature Biotechnology
Volume32
Issue number12
DOIs
Publication statusPublished - 1 Dec 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'A community effort to assess and improve drug sensitivity prediction algorithms'. Together they form a unique fingerprint.

Cite this