TY - JOUR
T1 - A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation
AU - Xu, Liang
AU - Wang, Yan
AU - Dong, Junhui
AU - Zhang, Wei
AU - Tang, Mingjia
AU - Zhang, Weilan
AU - Wang, Kai
AU - Chen, Yinglong
AU - Zhang, Xiaoli
AU - He, Qing
AU - Zhang, Xinyu
AU - Wang, Kai
AU - Wang, Lun
AU - Ma, Yinbo
AU - Xia, Kai
AU - Liu, Liwang
N1 - This article is protected by copyright. All rights reserved.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88Mb by incorporating Illumina, PacBio, and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40,306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised of repetitive sequences, among which long terminal repeats (LTRs, 30.30%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2,108,577 SNPs, 8063 large insertions, 8054 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1 In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.
AB - High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88Mb by incorporating Illumina, PacBio, and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40,306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised of repetitive sequences, among which long terminal repeats (LTRs, 30.30%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2,108,577 SNPs, 8063 large insertions, 8054 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1 In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:000925616000001
U2 - 10.1111/pbi.14011
DO - 10.1111/pbi.14011
M3 - Article
C2 - 36648398
SN - 1467-7644
VL - 21
SP - 990
EP - 1004
JO - Plant Biotechnology Journal
JF - Plant Biotechnology Journal
IS - 5
ER -