A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

Junsong Zhang, L. Cui, D. Jiang, Yinong Liu, S. Hao, Y. Ren, X. Han, Z. Liu, Y. Wang, C. Yu, Y. Huan, X. Zhao, Y. Zheng, H. Xu, X. Ren, X. Li

Research output: Contribution to journalArticlepeer-review

56 Citations (Web of Science)

Abstract

The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3 Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.
Original languageEnglish
Pages (from-to)1-6
JournalScientific Reports
Volume5
DOIs
Publication statusPublished - 10 Feb 2015

Fingerprint

Dive into the research topics of 'A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess'. Together they form a unique fingerprint.

Cite this