Projects per year
Abstract
This work is focused on the assessment of greenwater overtopping onto fixed ship-shaped FPSO models using three dimensional (3-D) Computational Fluid Dynamics (CFD) simulations. Good agreement between the numerical results and published experimental data from Barcellona et al. (2003) indicates that 3-D CFD is an effective tool which may be used to assess greenwater associated with an incident wave group. Different wall-sided bow shapes are investigated numerically, and the results provide insight into how the bow shape influences the evolution of on-deck flows, and the horizontal force on a vertical wall spanning the full deck width for incident waves approaching normal to the bow. It is found that the horizontal force, thus, the horizontal momentum of greenwater flows, is a result of the combined action of water-front velocities and the corresponding water volume impacting on the structures. For the bow shapes considered in this study, although clear differences in on-deck flow are observed for different bow shape, differences in force on the vertical wall are relatively small. Simulations for a 2-D vertical rectangular box that has the same longitudinal section as the 3-D model FPSOs give somewhat similar results to 3-D predictions along the centre-line. This similarity may be due partly to the fact that increases in on-deck flow velocity due to increased freeboard exceedance in the 2-D simulations compensates for a lack of focusing of the on-deck flow observed in the 3-D simulations. This finding has implications for understanding how computationally cheaper 2-D greenwater simulations relate to more realistic 3-D greenwater events. (C) 2018 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 283-301 |
Number of pages | 19 |
Journal | Journal of Fluids and Structures |
Volume | 84 |
DOIs | |
Publication status | Published - Jan 2019 |
Fingerprint
Dive into the research topics of '3-D numerical modelling of greenwater loading on fixed ship-shaped FPSOs'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ARC ITRH for Offshore Floating Facilities
Watson, P., Cassidy, M., Efthymiou, M., Ivey, G., Jones, N., Cheng, L., Draper, S., Zhao, M., Randolph, M., Gaudin, C., O'Loughlin, C., Hodkiewicz, M., Cripps, E., Zhao, W., Wolgamot, H., White, D., Doherty, J., Taylor, P., Stanier, S. & Gourvenec, S.
ARC Australian Research Council
1/01/14 → 30/12/22
Project: Research