3-D Distribution of Sulphide Minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their Relationship to Microstructures Using X-Ray Computed Tomography

Belinda Godel, S.-J. Barnes, Wolfgang Maier

    Research output: Contribution to journalArticle

    55 Citations (Scopus)

    Abstract

    Large mafic-ultramafic layered intrusions may contain layers enriched in platinum-group elements (PGE). In many cases, the PGE are hosted by disseminated sulphides. We have investigated the distribution of the sulphides in three dimensions in two oriented samples of the Merensky Reef and the J-M Reef. The aim of the study was to test the hypothesis that the sulphides crystallized from a base metal sulphide liquid that percolated through the cumulate pile during compaction. The distribution of sulphides was quantified using: (1) X-ray computed tomography; (2) microstructural analysis of polished thin sections oriented parallel to the paleovertical; (3) measurement of dihedral angles between sulphides and silicates or oxides. In the Merensky Reef and the J-M Reef, sulphides are connected in three dimensions and fill paleovertical dilatancies formed during compaction, which facilitated the downward migration of sulphide liquid in the cumulate. In the melanorite of the Merensky Reef, the sulphide content increases from top to bottom, reaching a maximum value above the underlying chromitite layer. In the chromitite layers sulphide melt connectivity is negligible. Thus, the chromitite may have acted as a filter, preventing extensive migration of sulphide melt downwards into the footwall. This could partially explain the enrichment in PGE of the chromitite layer and the observed paucity of sulphide in the footwall.
    Original languageEnglish
    Pages (from-to)1853-1872
    JournalJournal of Petrology
    Volume47
    Issue number38961
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Sulfide minerals
    reefs
    Reefs
    Republic of South Africa
    Sulfides
    tomography
    Tomography
    sulfides
    microstructure
    reef
    minerals
    sulfide
    X rays
    Microstructure
    mineral
    chromitite
    x rays
    platinum group element
    Platinum
    platinum

    Cite this

    @article{a5840b1bfb7942ac825987a6f5c4d00b,
    title = "3-D Distribution of Sulphide Minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their Relationship to Microstructures Using X-Ray Computed Tomography",
    abstract = "Large mafic-ultramafic layered intrusions may contain layers enriched in platinum-group elements (PGE). In many cases, the PGE are hosted by disseminated sulphides. We have investigated the distribution of the sulphides in three dimensions in two oriented samples of the Merensky Reef and the J-M Reef. The aim of the study was to test the hypothesis that the sulphides crystallized from a base metal sulphide liquid that percolated through the cumulate pile during compaction. The distribution of sulphides was quantified using: (1) X-ray computed tomography; (2) microstructural analysis of polished thin sections oriented parallel to the paleovertical; (3) measurement of dihedral angles between sulphides and silicates or oxides. In the Merensky Reef and the J-M Reef, sulphides are connected in three dimensions and fill paleovertical dilatancies formed during compaction, which facilitated the downward migration of sulphide liquid in the cumulate. In the melanorite of the Merensky Reef, the sulphide content increases from top to bottom, reaching a maximum value above the underlying chromitite layer. In the chromitite layers sulphide melt connectivity is negligible. Thus, the chromitite may have acted as a filter, preventing extensive migration of sulphide melt downwards into the footwall. This could partially explain the enrichment in PGE of the chromitite layer and the observed paucity of sulphide in the footwall.",
    author = "Belinda Godel and S.-J. Barnes and Wolfgang Maier",
    year = "2006",
    doi = "10.1093/petrology/egl029",
    language = "English",
    volume = "47",
    pages = "1853--1872",
    journal = "Journal of Petrology",
    issn = "0022-3530",
    publisher = "Oxford University Press",
    number = "38961",

    }

    TY - JOUR

    T1 - 3-D Distribution of Sulphide Minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their Relationship to Microstructures Using X-Ray Computed Tomography

    AU - Godel, Belinda

    AU - Barnes, S.-J.

    AU - Maier, Wolfgang

    PY - 2006

    Y1 - 2006

    N2 - Large mafic-ultramafic layered intrusions may contain layers enriched in platinum-group elements (PGE). In many cases, the PGE are hosted by disseminated sulphides. We have investigated the distribution of the sulphides in three dimensions in two oriented samples of the Merensky Reef and the J-M Reef. The aim of the study was to test the hypothesis that the sulphides crystallized from a base metal sulphide liquid that percolated through the cumulate pile during compaction. The distribution of sulphides was quantified using: (1) X-ray computed tomography; (2) microstructural analysis of polished thin sections oriented parallel to the paleovertical; (3) measurement of dihedral angles between sulphides and silicates or oxides. In the Merensky Reef and the J-M Reef, sulphides are connected in three dimensions and fill paleovertical dilatancies formed during compaction, which facilitated the downward migration of sulphide liquid in the cumulate. In the melanorite of the Merensky Reef, the sulphide content increases from top to bottom, reaching a maximum value above the underlying chromitite layer. In the chromitite layers sulphide melt connectivity is negligible. Thus, the chromitite may have acted as a filter, preventing extensive migration of sulphide melt downwards into the footwall. This could partially explain the enrichment in PGE of the chromitite layer and the observed paucity of sulphide in the footwall.

    AB - Large mafic-ultramafic layered intrusions may contain layers enriched in platinum-group elements (PGE). In many cases, the PGE are hosted by disseminated sulphides. We have investigated the distribution of the sulphides in three dimensions in two oriented samples of the Merensky Reef and the J-M Reef. The aim of the study was to test the hypothesis that the sulphides crystallized from a base metal sulphide liquid that percolated through the cumulate pile during compaction. The distribution of sulphides was quantified using: (1) X-ray computed tomography; (2) microstructural analysis of polished thin sections oriented parallel to the paleovertical; (3) measurement of dihedral angles between sulphides and silicates or oxides. In the Merensky Reef and the J-M Reef, sulphides are connected in three dimensions and fill paleovertical dilatancies formed during compaction, which facilitated the downward migration of sulphide liquid in the cumulate. In the melanorite of the Merensky Reef, the sulphide content increases from top to bottom, reaching a maximum value above the underlying chromitite layer. In the chromitite layers sulphide melt connectivity is negligible. Thus, the chromitite may have acted as a filter, preventing extensive migration of sulphide melt downwards into the footwall. This could partially explain the enrichment in PGE of the chromitite layer and the observed paucity of sulphide in the footwall.

    U2 - 10.1093/petrology/egl029

    DO - 10.1093/petrology/egl029

    M3 - Article

    VL - 47

    SP - 1853

    EP - 1872

    JO - Journal of Petrology

    JF - Journal of Petrology

    SN - 0022-3530

    IS - 38961

    ER -