Dan Knight


    • The University of Western Australia (000), 35 Stirling Highway,

      6009 Perth


    Calculated based on number of publications stored in Pure and citations from Scopus
    If you made any changes in Pure these will be visible here soon.

    Personal profile


    Daniel R. Knight PhD FASM

    Senior Bioinformatician, Pathogen Genomics and Surveillance Unit, Microbiology, PathWest
    Adjunct Research Fellow, School of Biomedical Sciences, The University of Western Australia
    Honorary Research Fellow, Institute for Respiratory Health, The University of Western Australia


    Research area

    • Public health genomics
    • Antimicrobial resistance
    • Clostridium difficile


    Competitive grants

    • 2024 – 2026 Discovery Early Career Researcher Award (DECRA). ARC. Sole Chief Investigator; AUD 437,977.
    • 2023 – 2025 Emerging Leader Fellowship. Western Australia Department of Health; Sole Chief Investigator; AUD 945,834 
    • 2022 – 2023 Emerging Leader Grant. Western Australia Department of Health; Sole Chief Investigator; AUD 100,000.
    • 2022 – 2025 NHMRC Ideas Grant. NHMRC. Associate Investigator; AUD 1,284,890. Lead CI Riley TV.
    • 2022 – 2024 Conquer CF Research Award. Conquer Cystic Fibrosis Ltd. Co-Chief Investigator (CIC); AUD 251,109.
    • 2019 – 2020 Raine Priming Grant. Raine Medical Research Foundation. Sole Chief Investigator; AUD 199,950.
    • 2018 – 2021 NHMRC Peter Doherty Early Career Fellowship. NHMRC. Sole Chief Investigator; AUD 333,938. 


    Major awards

    • Fellowship of the Australian Society for Microbiology (FASM, Aug 2022)
    • 2021 Raine Research Prize (Raine Medical Research Foundation). Awarded to an ECR in WA with the most outstanding scientific paper that seeks to better understand the nature, origin, and cause of human diseases, and their prevention and treatment (Knight et al. 2019. mBio). 
    • 2020 ASM Jim Pittard Early Career Award (Australian Society for Microbiology). Awarded in recognition of early-career research excellence and distinguished contribution to Australian research in Microbiology.


    Other awards, prizes and scholarships

    • 2022 Early Career Research Excellence Award, School of Biomedical Sciences, UWA. 
    • 2022 Finalist, Vice Chancellor’s Award for Research (ECR Category), UWA.
    • 2022 ICC Young Investigator Award. International Congress of Antimicrobial Chemotherapy (ICC).
    • 2021 Finalist, Vice Chancellor’s Excellence in Research Award (ECR Category), Murdoch University.
    • 2018 International One Health Fellowship, One Health Platform.
    • 2018 ASA Student Travel Award. Australian Society for Antimicrobials (ASA).
    • 2016 ASM Nancy Millis Student Award. Australian Society for Microbiology.
    • 2015 Wellcome Trust Advanced Courses Scholarship. Wellcome Trust.
    • 2013 Australian Postgraduate Award. Australian Federal Government.


    PhD Thesis


    Invited talks (National/International)

    • 2022, 3rd Annual Scientific Meeting of ASM MicroSeq. Melbourne, Australia (Keynote).
    • 2022, 16th Biennial Congress of the Anaerobe Society of the Americas. Seattle, USA.
    • 2021, 12th Intl Conference on the Molecular Biology and Pathogenesis of the Clostridia. Banff, Canada.
    • 2021, The inaugural World Microbe Forum. American Society for Microbiology. USA, Virtual.
    • 2021, 48th Annual Scientific Meeting of the Australian Society for Microbiology. Melbourne, Australia (Plenary).
    • 2019, 29th Annual Congress of the Euro Soc Clin Microbiol and Infect Dis. Amsterdam, Netherlands.
    • 2018, 46th Annual Scientific Meeting of the Australian Society for Microbiology. Brisbane, Australia.
    • 2018, 6th International Clostridium difficile Symposium. Bled, Slovenia (Plenary).


    Proffered papers (National/International)

    • 2018, 5th International One Health Congress. Saskatoon, Canada.
    • 2022, 32nd International Congress of Chemotherapy and Infection, Perth, Australia.
    • 2018, 19th Annual Scientific Meeting of the Australian Society for Antimicrobials. Brisbane, Australia. 
    • 2016, 44th Annual Scientific Meeting of the Australian Society for Microbiology. Perth, Australia.
    • 2016, 17th Annual Scientific Meeting of the Australian Society for Antimicrobials. Melbourne, Australia.
    • 2012, 4th Biannual Conference of the Australian Pig Science Association. Melbourne, Australia.
    • 2012, 4th International Clostridium difficile Symposium. Bled, Slovenia.


    Invited talks (Local)

    • 2019, Infectious Diseases Breakfast Seminar, UWA and PathWest Laboratory Medicine, Perth, WA.
    • 2019, Centers for Res in Emerg Infect Dis (CREID) Symposium. Perkins Inst. for Medical Research, Perth, WA.
    • 2018, Australian Bioinformatics & Computational Biol Society. Perkins Inst. for Medical Research, Perth, WA
    • 2017, The Marshall Centre for Infectious Diseases Research and Training. UWA, Perth, WA.
    • 2016, West Coast Microbiome Network Seminar Series 2016. Curtin University, Bentley, WA.


    Editorial Activities

    • Associate Editor, Anaerobe (2022-2024)
    • Invited Editorial Board Member, Anaerobe (2021)
    • Invited Editorial Board Member, Epidemiology and Infection (2019-2021)
    • Co-Editor of Anaerobe Special Issue: Clostridium difficile: New global perspectives (PMID 35595345)


    Australian Society for Microbiology (ASM)

    • Fellow (FASM) since 2022
    • Member (MASM) since 2012
    • Committee member (WA branch) 2013-2023
      • Portfolios: Treasury (2019-2023), Scientific program (2018-19), Awards and scholarships (2017-18), Communications (2013-16) 


    Local Organising Committees (LOCs)

    • Secretary, ASM National Scientific Meeting 2016 (Perth, WA)
    • Founding member and scientific program convener, West Coast Microbiome Network (WCMN) symposiums 2016, 2017, 2018. 2019, 2021 (Perth, WA)
    • BacPath 15, The Molecular Biology of Bacterial Pathogens 2019 (Perth, WA)


    Refereed journal articles

    • Refereed journal articles: 70
    • h-index of 27, >2450 citations, Field-Weighted Citation Impact of 1.74.
    • 17 first-author publications, 10 senior author publications, and 6 invited reviews.
    • Google Scholar | ORCID ID 0000-0002-9480-4733 | Scopus ID 55295679500


    • Cautivo-Reyes K, Knight DR, Bowie D, Moreira-Grez B, Whiteley A, Riley TV. 2023. Biogeographic distribution and molecular epidemiology of Clostridioides (Clostridium) difficile in Western Australian soils. Appl Environ Microbiol In press
    • Hain-Saunders NMR, Knight DR, Bruce M, Byrne D, Riley TV. 2023. Genomic analysis of Clostridioides difficile recovered from horses in Western Australia. Microorganisms 11:1743 https://doi.org/10.3390/microorganisms11071743
    • Knight DR, Imwattana K, Collins DA, Lim S-C, Hong S, Putsathit P, Riley TV. 2023. Genomic epidemiology and transmission dynamics of recurrent Clostridioides difficile infection in Western Australia. Eur J Clin Microbiol Infect Dis 42:607-19  https://doi.org/10.1007/s10096-023-04569-x
    • Imwattana K, Shivaperumal N, Leepattarakit T, Kiratisin P, Knight DR, Riley TV. 2023. A white colony-producing Clostridioides difficile ribotype 020 strain. J Clin Microbiol 61:e00893-22 https://doi.org/10.1128/jcm.00893-22 
    • Shivaperumal N, Hain-Saunders NMR, Chang B, Riley TV, Knight DR. 2023. Complete genome sequences of evolutionary clade C-III strains of Clostridioides (Clostridium) difficile isolated from the environment in Western Australia. Microbiol Resour Announc 12 https://doi/10.1128/mra.00239-23


    • Rupnik M, Knight DR. 2022. Clostridioides difficile: new global perspectives. Anaerobe 74: 102557 https://doi.org/10.1016/j.anaerobe.2022.102557
    • Imwattana K, Putsathit P, Collins DA, Leepattarakit T, Kiratisin P, Riley TV, Knight DR. 2022. Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microb Genom 8:000792 https://doi.org/10.1099/mgen.0.000792
    • Pitcher NP, Harjani JR, Zhao Y, Jin J, Knight DR, Li L, Putsathit P, Riley TV. Carter GP, Baell JB. 2022. Development of 1,2,4-oxadiazole antimicrobial agents to treat enteric pathogens within the gastrointestinal tract. ACS Omega 7:6737-6759 https://doi.org/10.1021/acsomega.1c06294
    • Shivaperumal N, Knight DR, Imwattana K, Androga GO, Chang B, Riley TV. 2022. Esculin hydrolysis negative and TcdA-only producing strains of Clostridium (Clostridioides) difficile from the environment in Western Australia. J App Microbiol 00:1– 14 https://doi.org/10.1111/jam.15500
    • Hain-Saunders NMR, Knight DR, Bruce M, Riley TV. 2022. Clostridioides difficile infection and One Health: an equine perspective. Environ Microbiol 24:985-997 https://doi.org/10.1111/1462-2920.15898


    • Lim S‐C, Collins DA, Imwattana K, Knight DR, Perumalsamy S, Hain-Saunders NMR, Putsathit P, Speers D, Riley TV. 2021. Whole-genome sequencing links Clostridium (Clostridioides) difficile in the hospital to diverse sources in the community. J Appl Microbiol 00:1– 13 https://doi.org/10.1111/jam.15408
    • Imwattana K, Rodríguez C, Riley TV, Knight DR. 2021. A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile. Microb Genom 7:000696
    • O’Grady KI, Riley TV, Knight DR. 2021. Complete genome assemblies of three highly prevalent, toxigenic Clostridioides difficile strains causing healthcare-associated infections in Australia. Microbiol Resour Announc 10:e00599-21 https://doi.org/10.1128/MRA.00599-21
    • Mahadari MK, Tague AJ, Putsathit P, Hutton ML, Hammer KA, Knight DR, Riley TV, Lyras D, Keller PA, Pyne SG. 2021. Cationic peptidomimetic amphiphiles having a N-aryl- or N-naphthyl-1,2,3-triazole core structure targeting Clostridioides (Clostridium) difficile: Synthesis, antibacterial evaluation and an in vivo C. difficile infection model. Antibiotics 10:913 https://doi.org/10.3390/antibiotics10080913
    • O’Grady KI, Knight DR, Riley TV. 2021. Antimicrobial resistance in Clostridioides difficileEur J Clin Microbiol Infect Dis 40:2459-78 https://doi.org/10.1007/s10096-021-04311-5
    • Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D, Didelot X, Dingle KE, Eyre DW, Rodríguez C, and Riley TV. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 10:e64325 https://doi.org/10.7554/eLife.64325
    • Putsathit P, Hong S, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Moore C, Nimmo G, Prendergast L, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson R, Riley TV, Knight DR. 2021. Antimicrobial resistance surveillance of Clostridium difficile in Australia, 2015–2018. J Antimicrob Chemother https://doi.org/10.1093/jac/dkab099
    • Imwattana K, Knight DR, Riley TV. 2021 Can sequencing improve the diagnosis and management of Clostridioides difficile infection? Expert Rev Mol Diagn 10.1080/14737159.2021.1915774
    • Imwattana K, Putsathit P, Knight DR, Kiratisin P, Riley TV. 2021 Molecular characterisation of, and antimicrobial resistance in, Clostridioides difficile from Thailand, 2017-2018. Microb Drug Res 27:1505-12 https://doi.org/10.1089/mdr.2020.0603 
    • Hong S, Putsathit P, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, Moore C, Nimmo G, Prendergast L, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson R, Riley TV, Knight DR. Laboratory-based surveillance of Clostridium difficile infection in Australian healthcare and community settings, 2013–2018. J Clin Microbiol 58 (11) e01552-20 https://doi.org/10.1128/JCM.01552-20
    • Imwattana K, Kiratisin P, Riley TV, Knight DR. 2020. Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Anaerobe 66:102083 https://doi.org/10.1016/j.anaerobe.2020.102290
    • Lim S‐C, Knight DR, Moono P, Foster NF, Riley TV. 2020. Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. Environ Microbiol Rep 12:672-680 https://doi.org/10.1111/1758-2229.12889
    • Lim S-C, Riley TV, Knight DR. 2020. One Health: the global challenge of Clostridium difficile infection. Microbiol Aust 41:23-27 https://doi.org/10.1071/MA20007
    • Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. 2019. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 18:17-25. https://doi.org/10.1080/14787210.2020.1701436


    • Lim S-C, Knight DR, Riley TV. 2019. Clostridium difficile and One Health. Clin Microbiol Infect S1198-743X(19)30559-2. https://doi.org/10.1016/j.cmi.2019.10.023
    • Putsathit P, Neela VK, Joseph NMS, Oiu PT, Ngamwongsatit B, Knight DR, Riley TV. 2019. Molecular epidemiology of Clostridium difficile isolated from piglets. Vet Microbiol 237:108408https://doi.org/10.1016/j.vetmic.2019.108408
    • Androga GO, Knight DR, Hutton ML, Mileto SJ, James ML, Evans C, LyrasD, Chang BJ, Foster NF, Riley TV. 2019. In silico, in vitro and in vivo analysis of putative virulence factors identified in large clostridial toxin-negative, binary toxin-producing C. difficile strains. Anaerobe 60:102083. https://doi.org/10.1016/j.anaerobe.2019.102083
    • Hong S, Knight DR, Chang B, Carman RJ, Riley TV. 2019. Phenotypic characterisation of Clostridium difficile PCR ribotype 251, an emerging multi-locus sequence type clade 2 strain in Australia. Anaerobe 60:102066. https://doi.org/10.1016/j.anaerobe.2019.06.019
    • Knight DR, Riley TV. 2019. Genomic delineation of zoonotic origins of Clostridium difficileFront Public Health 7:164. https://doi.org/10.3389/fpubh.2019.00164
    • Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. 2019. Clostridium difficile ribotype 017 – characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect, 8:796-807. https://doi.org/10.1080/22221751.2019.1621670
    • Azimirad M, Gholami F, Yadegar A, Knight DR, Shamloei S, Aghdaei HA, Zali MR. 2019. Prevalence and characterization of Clostridium perfringens toxinotypes among patients with antibiotic-associated diarrhea in Iran. Sci Rep 9:7792. https://doi.org/10.1038/s41598-019-44281-5
    • Knight DR, Kullin B, Androga GO, Barbut F, Eckert C, Johnson S, Spigaglia P, Tateda K, Tsai PJ, Riley TV. 2019. Evolutionary and genomic insights into Clostridioides difficile sequence type 11: a diverse, zoonotic and antimicrobial resistant lineage of global One Health importance. mBio 10:e00446-19. https://doi.org/10.1128/mBio.00446-19
    • Hong S, Knight DR, Riley TV. 2019. The impact of antimicrobial resistance on induction, transmission and treatment of Clostridium difficile infection. Microbiol Aust 40:77-81. https://doi.org/10.1071/MA19022
    • Tague AJ, Putsathit P, Hutton ML, Hammer KA, Wales SM, Knight DR, Riley TV, Lyras D, Keller PA, Pyne SG. 2019. Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles targeting Clostridioides (Clostridium) difficile: synthesis, antibacterial evaluation and an in vivo C. difficile infection model. Eur J Med Chem 170:203-224. https://doi.org/10.1016/j.ejmech.2019.02.068
    • Tague AJ, Putsathit P, Hammer KA, Wales SM, Knight DR, Riley TV, Keller PA, Pyne SG. 2019. Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: Synthesis, antibacterial evaluation and preliminary mechanism of action studies. Eur J Med Chem 168:386-404. https://doi.org/10.1016/j.ejmech.2019.02.013
    • Wehrhahn MC, Keighley C, Kurtovic J, Knight DR, Hong S, Hutton M, Lyras D, Wang Q, Leong R, Borody T, Edye M, Riley TV. 2019. A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin-producing clade 2 ribotype 251 strain. Anaerobe 55:117-123. https://doi.org/10.1016/j.anaerobe.2018.11.009
    • Roshan N, Riley TV, Knight DR, Steer JH, Hammer KA. 2019. Natural products show diverse mechanisms of action against C. difficileJ Appl Microbiol 126:468-479. https://doi.org/10.1111/jam.14152
    • Roshan N, Riley TV, Knight DR, Hammer KA. 2018. Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Sci Rep 8:15735. https://doi.org/10.1038/s41598-018-33954-2
    • Androga GOKnight DR, Lim SC, Foster NF, Riley TV. 2018. Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe 54:55-60. Authors contributed equally to this work. https://doi.org/10.1016/j.anaerobe.2018.07.007
    • Lim S-C, Androga GO, Knight DR, Moono P, Foster NF, Riley TV. 2018. Antimicrobial susceptibility of Clostridium difficile isolated from food and environmental sources in Western Australia. Int J Antimicrob Agents 52: 411-415. https://doi.org/10.1016/j.ijantimicag.2018.05.013
    • Amy J, Bulach D, Knight DR, Riley TV, Johanesen P, Lyras D. 2018. Identification of large cryptic plasmids in Clostridioides (ClostridiumdifficilePlasmid 96-97:25-38. http://dx.doi.org/10.1016/j.plasmid.2018.04.001
    • Man NYT, Knight DR, Stewart SG, McKinley AJ, Riley TV, Hammer KA. 2018. Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Sci Rep 8:6912. http://dx.doi.org/10.1038/s41598-018-25080-w


    • McGovern AM, Androga GO, Knight DR, Watson MW, Elliott B, Foster NF, Chang BJ, Riley TV. Prevalence of binary toxin positive Clostridium difficile in diarrhoeal humans in the absence of epidemic ribotype 027. PLoS One 12:e0187658. http://dx.doi.org/10.1371/journal.pone.0187658
    • PutsathitP, Maneerattanaporn M, PiewngamP, Knight DR, Kiratisin P, Riley TV. Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob Resist Infect Con 6:58. http://dx.doi.org/10.1186/s13756-017-0214-z
    • Knight DR, Squire MM, Collins DA, Riley TV. Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol 7:2138. http://dx.doi.org/10.3389/fmicb.2016.02138
    • Elliott B, Androga GA, Knight DR, Riley TV. Clostridium difficile infection: evolution, phylogeny and molecular epidemiology. Infect Genet Evol 49:1-11. http://dx.doi.org/10.1016/j.meegid.2016.12.018


    • Moono P, Foster NF, Hampson DJ, Knight DR, Bloomfield LE, Riley TV. Clostridium difficile Infection in Production Animals and Avian Species: A Review. Foodborne Pathog Dis 13:647-655. http://dx.doi.org/10.1089/fpd.2016.2181
    • McGovern AM, Foster NF, Pereira AL, Knight DR, Elliott B, Chang BJ, Riley TV. Human Clostridium difficile infection caused by a livestock-associated PCR ribotype 237 strain in Western Australia. J Med Microbiol Case Rep 3. http://dx.doi.org/10.1099/jmmcr.0.005062
    • Knight DR, Androga GA, Ballard SA, Howden BP, Riley TV. A phenotypically silent vanB2 operon carried on a Tn1549-like element in Clostridium difficilemSphere 1: e00177-16. http://dx.doi.org/10.1128/mSphere.00177-16
    • Knight DR and Riley TV. Clostridium difficile clade 5 in Australia: antimicrobial susceptibility profiling of PCR ribotypes of human and animal origin. J Antimicrob Chemother 71: 2213-2217. http://dx.doi.org/10.1093/jac/dkw124
    • Knight DR, Putsathit P, Elliott B, Riley TV. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficileClin Microbiol Infect 22: 266.e1–266.e7. http://dx.doi.org/10.1016/j.cmi.2015.11.017


    • Moono P, Putsathit P, Knight DR, Squire MM, Hampson DJ, Foster NF, Riley TV. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Anaerobe 37: 62-66. http://dx.doi.org/10.1016/j.anaerobe.2015.11.012
    • Squire MM, Knight DR, Riley TV. Community-acquired Clostridium difficile infection and Australian food animals. Microbiol Aust 36(3). http://dx.doi.org/10.1071/MA15040
    • Knight DR, Giglio S, Huntington PG, Korman TM, Kotsanas D, Moore CV, Paterson DL, Prendergast L, Huber CA, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV. Surveillance for antimicrobial resistance in Australian isolates of Clostridium difficile, 2013-2014. J Antimicrob Chemother 70: 2992-9. http://dx.doi.org/10.1093/jac/dkv220
    • Knight DR, Hart J, Gottardo NG, Eyre DW, Crook DW, Riley TV. Two cases of Clostridium difficile infection in unrelated oncology patients attributable to a single clone of C. difficile PCR ribotype 126. J Med Microbiol Case Rep 2. http://dx.doi.org/10.1099/jmmcr.0.000043
    • Knight DR, Elliott B, Chang B, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficileClin Microbiol Rev 28: 721-741. http://dx.doi.org/10.1128/CMR.00127-14
    • Grandgirard D, Furi L, Ciusa ML, Baldassarri L, Knight DR, Morrissey I, Largiadèr CR, Leib SL, Oggioni MR. Mutations upstream of fabI in triclosan-resistant Staphylococcus aureus strains are associated with elevated fabI gene expression. BMC Genomics 16:345. http://dx.doi.org/10.1186/s12864-015-1544-y
    • Oggioni MR, Coelho JR, Furi L, Knight DR, Viti C, Orefici G, Martinez JL, Freitas AT, Coque T, Morrissey I. Significant differences characterize the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des 21: 2054-7. http://dx.doi.org/10.2174/1381612821666150310103238


    • Knight DR, Squire MM, Riley TV. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol 81: 119-123. http://dx.doi.org/10.1128/AEM.03032-14
    • Knight DR, Squire MM, Riley TV. Laboratory detection of Clostridium difficile in piglets in Australia. J Clin Microbiol 52: 3856-62. http://dx.doi.org/10.1128/JCM.01225-14
    • Hart J, Putsathit P, Knight DR, Sammels L, Riley TV, Keil A. Clostridium difficile infection diagnosis in a paediatric population: comparison of methodologies. Eur J Clin Microbiol Infect Dis 33: 1555-64. http://dx.doi.org/10.1007/s10096-014-2108-9
    • Morrissey I, Oggioni MR, Knight DR, Curiao T, Coque T, Kalkanci A, Martinez JL. 2014. Evaluation of epidemiological cut-off values indicates that biocide-resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS One 9: e86669. http://dx.doi.org/10.1371/journal.pone.0086669


    • Friedman ND, Pollard J, Stuart D, Alfredson D, Knight DR, Davey E, Parry L, Riley TV. Prevalence of Clostridium difficile colonization among healthcare workers. BMC Infect Dis 13:459. http://dx.doi.org/10.1186/1471-2334-13-459
    • Knight DR and Riley TV. Prevalence of Clostridium difficile gastrointestinal carriage in Australian sheep and lambs. Appl Environ Microbiol 79:5689-92. http://dx.doi.org/10.1128/AEM.01888-13
    • Furi L, Ciusa ML, Knight DR, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR, Freitas AT, Marchi E, Moce L, Visa P, Northwood JB, Viti C, Borghi E, Orefici G, Morrissey I, Oggioni MR. Evaluation of reduced susceptibility to quaternary ammonium compounds & bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureusAntimicrob Agents Chemother 57:3488-3497. http://dx.doi.org/10.1128/AAC.00498-13
    • Knight DR, Thean S, Putsathit P, Fenwick S, Riley TV. Cross-sectional study reveals high prevalence of C. difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol 79:2630-5. http://dx.doi.org/10.1128/AEM.03951-12


    • Morrissey I, Seifert H, Canton R, Nordmann P, Stefani S, MacGowan A, Janes R, Knight DR. Activity of oritavancin against methicillin-resistant staphylococci, vancomycin-resistant enterococci, and b-haemolytic streptococci collected from western European countries in 2011. J Antimicrob Chemother 68:164-167. http://dx.doi.org/10.1093/jac/dks344
    • Cuisa ML, Furi LKnight DR, Decorosi F, Fondi M, Raggi C, Coelho JR, Aragones L, Moce L, Visa P, Freitas AT, Baldassarri L, Renato F, Viti C, Orefici G, Martinez JL, Morrissey I, Oggioni MR. A novel resistance mechanism to triclosan witnesses horizontal gene transfer and demonstrates selective pressure for reduced biocide susceptibility in clinical strains of S. aureusInt J Antimicrob Agents 40:210-220. †Authors contributed equally to this work. http://dx.doi.org/10.1016/j.ijantimicag.2012.04.021
    • Coelho JR, Carriço JA, Knight DR, Martinez J, Morrissey I, Oggioni MR, Freitas AT. The use of machine learning methodologies to analyze antibiotic and biocide susceptibility in S. aureusPLoS One 8:e55582. http://dx.doi.org/10.1371/journal.pone.0055582


    • Huber PA, Birdsey GM, Lumb MJ, Prowse DT, Perkins TJ, Knight DR and Danpure CJ. Peroxisomal import of human alanine: glyoxylate aminotransferase (AGT) requires ancillary targeting information remote from its C-terminus. J Biol Chem 280:27111-20. http://dx.doi.org/10.1074/jbc.M502719200



    Expertise related to UN Sustainable Development Goals

    In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

    • SDG 3 - Good Health and Well-being

    Research expertise keywords

    • Microbial genomics
    • Surveillance
    • Pathogens
    • AMR
    • Evolution
    • Phylogenetics
    • Pathogenicity
    • One Health


    Dive into the research topics where Dan Knight is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
    • 1 Similar Profiles