Socioeconomic, Ethnocultural, Substance- and Cannabinoid- Related Epidemiology of Down Syndrome USA 1986-2016 Dataset: An Ecological Geotemporospatial and Causal Inference Investigation

Dataset

Description

Background. Downs syndrome (DS) is the commonest of the congenital genetic defects. Its incidence has been rising in recent years for unknown reasons. Objective. Investigate the relationship of DS to substance- and cannabinoid- exposure; and causality.

Methods. Observational ecological population-based epidemiological study 1986-2016. Analysis performed January 2020. Geotemporospatial and causal inference analysis. Participants: Patients were diagnosed with DS and reported to state based registries; collated nationally. Data source: annual reports of National Birth Defects Prevention Network of Centres for Disease Control. Exposures: Drug exposure was taken from the National Survey of Drug Use and Health (NSDUH) conducted annually by Substance Abuse and Mental Health Services Administration. Nationally representative sample 67,000 participants annually. Drug exposures: cigarette consumption, alcohol abuse, analgesic/opioid abuse, cocaine use and last month cannabis use. Ethnicity and median household income: US Census Bureau. Maternal age of childbearing: CDC births registries. Cannabinoid concentrations: Drug Enforcement Agency seizures.

Results. NSDUH report 74.1% mean annual response rate. All other data was population-wide. DS rate (DSR) was noted to be rising over time, cannabis use, and cannabis-use quintile. In the optimal geospatial model lagged to four years terms including Δ9-tetrahydrocannabinol and cannabigerol were significant (from β-est.=4189.96 (95%C.I. 1924.74, 6455.17), P=2.9x10-4). Ethnicity, income, and maternal age covariates were not significant. DSR in states where cannabis was not illegal was higher than elsewhere (β-est.=2.160 (1.5, 2.82), R.R.=1.81 (1.51, 2.16), P=4.7x10-10). In inverse probability-weighted mixed models terms including cannabinoids were significant (from β-estimate=18.82 (16.82, 20.82), P
Date made available2022
PublisherMendeley Data

Cite this