Machine Learning Based Delay Tolerant Protocols for Underwater Acoustic Wireless Sensor Networks

Lin Zou
School of Electrical, Electronic and Computer Engineering
The University of Western Australia

This thesis is presented for the degree of

Doctor of Philosophy

September 2014
Declaration

This is to certify that:

- the thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published written by another person, except where due reference has been made in the text,
- the thesis comprises only my original work towards the PhD,
- due acknowledgement has been made in the text to all other material used,
- the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices,
- I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying and dissemination through the library digital thesis collection.

Lin Zou, September 2014
Acknowledgements

First and foremost, I would like to sincerely express my gratitude to my supervisors, Dr. David (Defeng) Huang and Dr. Roberto Togneri, for their support during the course of my studies. Without their enthusiasm, dedication, and confidence in me, this work would have been impossible. For the past few years, they have put great effort into helping me find direction and have assisted me in conducting this research. I have often benefited from their knowledge and experience in both my research and life. Thanks Dr. Huang and Dr. Togneri for offering me such a rewarding experience during the course of my PhD studies.

Also, many thanks to my colleagues in the research group SPWCL at the University of Western Australia for their insightful discussions and social activities. I would especially like to express my appreciation to Prof. Angela (Yingjun) Zhang and her group members at the Chinese University of Hong Kong (CUHK). It was a great pleasure to have an opportunity to work with them at CUHK as a visiting scholar. Their insights, discussions and generous help have led me to my fruitful research. I would also like to thank my parents and my husband for their understanding, support and most of all, their love over the past years.

Finally, I also gratefully acknowledge my host institution, the School of Electrical, Electronic and Computer Engineering at the University of Western Australia, and the Endeavor Scholarship Office for their financial and administrative support during my term.
Publications

BOOK CHAPTER

CONFERENCE

I would like to dedicate this thesis to my loving parents ...
Abstract

In recent years, the developments of underwater acoustic wireless sensor networks (UA-WSNs) have attracted considerable research interest due to their capabilities to support underwater missions. Underwater acoustic communication channels are featured with large attenuation, long propagation delay and constrained bandwidth, which limit communications between sensors and make the system intermittent. As a result, delay tolerance is one of the major design concerns for supporting UA-WSNs to carry out tasks in harsh subsea environments. Although a number of delay tolerant schemes have been proposed for terrestrial wireless sensor networks, the fundamental differences between underwater acoustic channels and radio frequency channels make those schemes perform poorly in subsea environments. Therefore, it is desirable to develop a feasible, reliable and robust protocol for high-speed underwater acoustic wireless communications. In this dissertation, we present a family of delay tolerant protocols for UA-WSNs, which employ reinforcement learning algorithms.

In the proposed system, a UA-WSN consisting of a number of static sensors and a mobile ferry is modeled as a single agent reinforcement learning system. The sensors are assumed to be sparsely-distributed, energy-constrained, stationary, and consequently are not capable of peer to peer sensor communications. For the purpose of conserving energy, each sensor periodically transits between the active state and the sleep state. A ferry is employed to travel around the deployment field to collect, carry and deliver data packets between sensors. A specific position where the ferry contacts with a specific sensor is known as a way-point which is fixed at the position of its host sensor. The ferry acts as the intelligent agent of the employed reinforcement
learning algorithm, which has the freedom to determine the order of the way-points to be visited according to its independent learning. By using the proposed protocol, the ferry is capable of learning from the environment and then adaptively adjusting the relevant parameters of the networks. Extensive simulation results demonstrate the feasibility of the proposed protocol which achieves a remarkable improvement of system performance in comparison with existing protocols.

For the purpose of improving the performance and flexibility of the proposed system, we enable the dynamic position of way-points within the transmission range of their host sensors. An artificial neural network algorithm based Neural-Q-Learning (NQL) protocol is proposed to enable the ferry (i.e. the NQL agent) to find an efficient and relatively short traveling route which inter-connects the optimized way-points to deliver data packets between sensors. Compared with the conventional Q-Learning algorithms, the system agent avoids searching a large or infinite lookup table by searching the optimal action from a continuous q-curve produced by the Neural-Q-Learning algorithm. Simulation results show that the NQL system improves the performance by enabling the ferry to determine the optimal position of way-points in a two-dimensional continuous space, which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferry and sensors.

Finally, the system is extended to a cooperative multi-agent reinforcement learning (MARL) based NQL protocol (named MNQL protocol). The proposed MNQL system employs the joint action learner algorithm (JAL) to coordinate the actions of multiple ferries, each of which is modeled as an individual and independent intelligent agent of the system and treats the actions of other ferries as part of the environment. Since the global information (e.g. states and actions of other ferries) is not fully observable for each individual ferry, each ferry employs a local database to store the most recent action and state of other ferries which are used by a behavior predictor to estimate the
possible action and state of other ferries when direct communications are infeasible. Compared with the single agent based approaches, the MNQL system benefits from the cooperative actions among the ferries.

We analyzed the performance of the proposed protocols in underwater acoustic wireless sensor networks with various topologies. Compared with the existing delay tolerant protocols, the proposed reinforcement learning algorithm based protocols reduce the delivery delay and delivery cost by enabling the ferry to find an efficient and relatively short traveling route which inter-connects the optimized way-points to deliver data packets between sensors. The employments of the artificial neural network algorithm and the multi-agent reinforcement learning algorithm improve the system performance further.
Contents

List of Figures xvii
List of Tables xix
List of Acronyms xxi

1 Introduction 1
 1.1 Background .. 1
 1.2 Dissertation Contributions 3
 1.3 Dissertation Organization 5

2 A Reinforcement Learning Based Energy Efficient Protocol for
 UA-WSNs and its Implementation 7
 2.1 Introduction 7
 2.2 Related Works 9
 2.2.1 Underwater Acoustic Communications 9
 2.2.2 Q-Learning Algorithm 12
 2.3 System Descriptions 15
 2.3.1 System State Space 18
 2.3.2 Action Set 18
 2.3.3 Reward Function 18
 2.4 Simulations .. 22
 2.4.1 Configurations 22
 2.4.2 Simulation Results 22
Contents

4.3.1.2 Optimal Action and Action Set .. 59
4.3.2 Generating the Q-Curve .. 61
4.3.3 Improvement of the ANN and the Q-Curve 62
 4.3.3.1 Evaluation of the Practical Quality Value 62
 4.3.3.2 Agent Behavior Prediction .. 63
4.4 Simulation .. 65
 4.4.1 Configurations ... 65
 4.4.2 Simulation Results .. 66
 4.4.2.1 Performance of the MNQL Protocol 66
 4.4.2.2 Performance Comparison with Existing Protocols 69
4.5 Conclusion .. 75

5 Conclusions and Future Work ... 77
 5.1 Conclusions ... 77
 5.2 Future Work .. 79

References ... 81
List of Figures

2.1 The lower and upper boundaries of an underwater acoustic communication channel and the corresponding energy loss versus the propagation distance [59] .. 12
2.2 System state and action set .. 19
2.3 Delivery delay versus speed of ferry node 24
2.4 Ferry node’s traveling distance per delivered packet versus speed of ferry node .. 24
2.5 Average meeting probabilities versus speed of ferry node 26
2.6 Variance of meeting probability versus speed of ferry node 26
3.1 A three-layer artificial neural network 32
3.2 Flow chart of the neural Q-learning algorithm 34
3.3 System state and action set .. 37
3.4 The polar coordinates of a way-point relative to its host sensor .. 38
3.5 The structure of ANN employed in the proposed system 39
3.6 NQL: the average delivery delay versus ferry speed 47
3.7 NQL: the ferry’s traveling distance per delivered packet versus ferry speed .. 47
3.8 NQL: the average delivery delay versus $p_{m,max}$ 48
3.9 NQL: the ferry’s traveling distance per delivered packet versus $p_{m,max}$ 48
3.10 Delivery delay versus ferry speed .. 51
3.11 Ferry’s traveling distance per delivered packet versus ferry speed . 51
3.12 Delivery delay versus $p_{m,max}$... 52
3.13 Ferry’s traveling distance per delivered packet versus $p_{m,max}$ 52
LIST OF FIGURES

4.1 Flow chart of the cooperative MNQL algorithm 59
4.2 System state and action set .. 61
4.3 total delivered packets versus $p_{m,\text{max}}$ 67
4.4 delivery delay versus $p_{m,\text{max}}$.. 67
4.5 Ferry’s traveling distance per delivered packet versus $p_{m,\text{max}}$... 68
4.6 total delivered packets versus speed .. 68
4.7 delivery delay versus speed ... 70
4.8 Ferry’s traveling distance per delivered packet versus speed 70
4.9 total delivered packets versus $p_{m,\text{max}}$.. 72
4.10 delivery delay versus $p_{m,\text{max}}$.. 72
4.11 Ferry’s traveling distance per delivered packet versus $p_{m,\text{max}}$... 74
4.12 total delivered packets versus speed .. 74
4.13 delivery delay versus speed ... 76
4.14 Ferry’s traveling distance per delivered packet versus speed 76
List of Tables

2.1 The feasible bandwidth $B_{tx}(d)$, lower boundary $f_l(d)$ and upper boundary $f_u(d)$ corresponding to propagation distance d 13
List of Acronyms

ANN Artificial Neural Network
AODV Ad hoc On-demand Distance Vector protocol
AUV Autonomous Underwater Vehicle
DM Data Mule
DVF Distributed Value Function
IL Independent Learner
JAL Joint Action Learner
MANET Mobile Ad-hoc wireless Network
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
MF Message Ferry
MNQL Multi-Agent Neural-Q-Learning
NQL Neural-Q-Learning
OFDM Orthogonal Frequency-Division Multiplexing
PSD power spectral density
QL Q-Learning
LIST OF ACRONYMS

RL Reinforcement Learning
RW Random Walk
SARL Single-Agent Reinforcement Learning
SNR Signal to Noise Ratio
SP Shortest Path
UA-WSNs Underwater Acoustic Wireless Sensor Networks
Chapter 1

Introduction

1.1 Background

Over 70 percent of the Earth’s surface is covered by the ocean, but more than 95 percent of which remains unexplored \[23, 76\]. For exploring and exploiting the unknown subsea world, it is desirable to develop effective and efficient communication means to support underwater missions such as oceanographic data collection, environment monitoring, and offshore oil and gas exploration.

Most underwater wireless communications use acoustic waves since electromagnetic waveforms, such as radio and light, hardly propagate to a distance long enough for most practical applications due to the severe attenuation of seawater \[49\]. Researches in recent decades have revealed that the underwater acoustic communication channels are featured with large attenuation, long propagation delay, high bit error rate and limited feasible bandwidth \[2, 40\]. Moreover, many recent underwater acoustic communication researches focus on the fully distributed underwater acoustic wireless sensor networks (UA-WSNs) since the centralized approach is not robust especially when communication is limited and failures are highly probable \[65, 66, 71, 80\]. Due to the significant attenuation and noise interference in underwater acoustic communication channels, the required transmission power may be many times greater than that in terrestrial communication systems \[60\]. For the purpose of energy conservation, the transmission range of acoustic sensors in UA-WSNs is usually much shorter than that of the terrestrial counterparts, which limits communications between sensors. As
1. INTRODUCTION

As a result, in UA-WSNs which are usually envisaged to monitor much larger areas than those on the ground, the energy-constrained sensors are sparsely-distributed in a relatively large field and are not capable of providing reliable peer to peer sensor communications. In some cases, even an end-to-end connection between a source and a destination may never be present due to the intermittent connections among sensors. In such communication environments, some existing ad hoc routing protocols such as the Ad hoc On-Demand Distance Vector (AODV) routing protocol [67] and the Dynamic Source Routing (DSR) protocol [45] fail to establish routes. Moreover, the slow propagation speed of acoustic signals in underwater environments and the very limited bandwidth cause remarkable propagation delays which significantly challenge the networking concepts developed for their terrestrial counterparts where propagation delay is usually negligible. Therefore, it is essential to develop an effective and efficient delay tolerant scheme for high-speed UA-WSN systems.

The Delay Tolerant Network (DTN) is one of the recent approaches to such intermittent network architectures [12, 43], which have the potential to support a wide range of applications in underwater environments. The development of DTNs has attracted many research interests in recent decades [20, 25, 41, 75, 93] due to their potentially large impact to the overall network performance. A number of delay tolerant protocols have been proposed for UA-WSNs, e.g. data mules [73] and message ferry [92]. In the data mules protocol, intermediate carriers that follow a random walk mobility model are used to carry data from static sensors to base-stations. The individual sensor nodes transfer their data to the mule when it comes into radio range and the collected data is in turn delivered to the sinks. By increasing the buffer size of the mules, fewer mules can service a sensor network albeit at the cost of a higher data delivery delay [73]. The message ferry protocol employs and controls a ferry to collect, carry and deliver data from a source node to a destination node. The design of the ferry’s route is critical for the optimization of message ferry systems.

In the proposed research, a delay-tolerant UA-WSN system consists of a number of static sensors and a mobile ferry (or multiple ferries for multi-agent systems, see chapter 5). The maximum transmission power of each sensor node is constrained by the limited battery energy, which results in a relatively small
transmission range in underwater environments. Consequently, the transmission area of any two sensors does not overlap and the sensors cannot communicate with each other for exchanging information. For the purpose of conserving energy, each sensor periodically transits between the active state (high-power fully functional mode) and the sleep state (low-power partially functional mode) [46].

A ferry is employed to travel around the deployment field to collect, carry and deliver data packets between sensors. The traveling route of the ferry comprises a set of segments. Each segment connects two way-points which are defined as specific positions where the ferry can communicate with certain sensors. The ferry has the freedom to determine the position and order of the way-points to be visited according to its independent learning. In underwater communication systems, the values of key decision variables for the optimization of underwater sensor networks are difficult (or very costly) to be determined before their deployment due to the harsh ocean environment. Machine learning approaches (e.g. reinforcement learning [36, 82]) are therefore employed by the proposed delay tolerant UA-WSNs in order to optimize the system parameters according to the dynamic environments. By using the reinforcement learning algorithms, the intelligent agent is capable of self-adapting to the dynamic subsea environment according to its direct interactions with the environment, without relying on exemplary supervision or complete models of the environment. There are many important research issues to be solved for the implementation of the machine learning based delay tolerant protocols before they are employed in practical underwater acoustic communication systems. The first aspect of the proposed research in this dissertation focuses mainly on the exploration of an optimized traveling route for the ferry in the delay-tolerant UA-WSNs, aiming at reducing the delivery delay and the delivery cost as much as possible by maximizing the meeting probabilities between the ferry and the sensors. The second aspect is on analyzing the performance of the proposed protocols when considering a practical system environment.

1.2 Dissertation Contributions

The following summarizes the main research contributions of this dissertation:
1. INTRODUCTION

- A delay tolerant routing mechanism that employs the Q-Learning algorithm [82] is proposed based on the modeling, investigation and analysis of intermittent network architecture in underwater environments [95]. A UA-WSN consisting of a number of sparsely distributed static wireless sensors and a mobile ferry is modeled as a single-agent reinforcement learning system in which the way-points are fixed at the position of their host sensors. The ferry detects the environmental parameters and decides the optimal way-point that it targets to visit accordingly. The proposed delay-tolerant protocol optimizes the system parameters to adapt to the underwater environment after having been deployed.

To verify the effectiveness and efficiency of the proposed delay tolerant protocol, simulations are carried out with various network topologies. Simulation results show that the use of the proposed protocol reduces the delivery delay and delivery cost by maximizing the meeting probabilities between the ferry and the sensors.

- A Neural-Q-Learning (NQL) based [26, 39] delay tolerant protocol is proposed for UA-WSNs [96]. The proposed NQL protocol reduces the delivery delay by enabling the ferry (i.e. the NQL agent) to find an efficient and relatively short traveling route which inter-connects the optimized way-points to deliver data packets between sensors. The optimal position of the way-points which are dynamic in a two-dimensional continuous space is determined by the ferry based on its independent learning from the environment.

Compared with the conventional Q-Learning algorithms, the NQL agent avoids searching a large or infinite lookup table. More specifically, a delay-tolerant UA-WSN is modeled as a single agent NQL system, in which an artificial neural network (ANN) [29] along with a moving least square algorithm [50] based wire-fitting interpolator [39] are employed to produce a continuous q-curve to replace the discrete lookup table used in the conventional Q-Learning algorithms. Simulation results show that the NQL system improves the system performance by enabling the ferry to determine the optimal position of way-points in a two-dimensional continuous
space, which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferry and sensors.

- A cooperative multi-agent Neural-Q-Learning (MNQL) based delay-tolerant protocol is proposed for UA-WSNs [17]. The proposed system employs multiple ferries to travel around the deployment field to collect, carry and deliver data packets between sparsely distributed sensors. The MNQL protocol reduces the delivery delay by enabling each of these ferries (i.e. the intelligent agents) to find an efficient and relatively short traveling route which inter-connects the optimized way-points of the sensors. The optimal position of the way-points which are dynamic in a two-dimensional continuous space is determined by the ferries based on its independent learning from environments.

Compared with the single agent systems, the MNQL system performance is improved by employing the joint action learner algorithm to coordinate the actions of the multiple ferries to achieve desirable outcomes [14, 77]. Each ferry in the proposed cooperative multi-agent system exercises individual choice while achieving an overall effect that benefits not only itself but also the whole system. For evaluating the quality of actions, each agent maintains a local database to store the up-to-date state and action information of other agents, which are used by a behavior predictor to estimate the action and state of other agents when direct communalities are infeasible. Simulation results show that the proposed protocol is capable of coordinating the actions of the multiple ferries to achieve the desirable improvements of system performance.

1.3 Dissertation Organization

In this dissertation, we will present a family of machine learning based delay tolerant routing protocols for UA-WSNs and discuss how to use them to reduce the delivery delay and delivery cost of UA-WSNs. By using the proposed protocols, the intelligent agents are capable of sensing the environment and then adjusting
1. INTRODUCTION

the relevant parameters of the networks.

The rest of this dissertation is organized as follows. Chapter 2 describes the implementation of a single agent reinforcement learning based delay tolerant routing protocol for UA-WSNs. In chapter 3, an artificial neural network based delay tolerant protocol is proposed to improve the performance of the intelligent agent in UA-WSNs. Chapter 4 extends the protocol to a multi-agent reinforcement learning based scheme by employing the Joint Action Learner (JAL) technique to coordinate the actions of multiple ferries. Finally, the conclusion is drawn in chapter 5.
Chapter 2

A Reinforcement Learning Based Energy Efficient Protocol for UA-WSNs and its Implementation

2.1 Introduction

In many wireless networks, intermittent network connections are the most significant constraints to the throughput of the systems. Due to the lack of fixed infrastructure in wireless ad-hoc networks, an end-to-end connection between a given source and destination may never be present. In such communication environments, some existing ad hoc routing protocols such as the Ad hoc On-Demand Distance Vector (AODV) routing protocol [67] and the Dynamic Source Routing (DSR) protocol [45] fail to establish routes.

The Delay Tolerant Network (DTN) is one of the recent approaches to such an intermittent network architecture. In recent decades, DTNs have attracted many research interests [42]. However, due to the great difference between the underwater acoustic communication channel and the radio frequency channel in the air [31, 55, 64], most of the conventional routing protocols proposed for terrestrial wireless sensor networks cannot be directly applied. As a result, it is
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

essential to develop an effective and efficient delay tolerant scheme for high-speed underwater communications.

In underwater environments, DTNs have the potential to support a wide range of applications, such as military surveillance or ecological monitoring. Recently, a number of delay tolerant protocols have been proposed for underwater wireless sensor networks, e.g. data mules [73] and message ferry [92]. In the data mules protocol, intermediate carriers that follow a random walk mobility model are used to carry data from static sensors to base-stations. The individual sensor nodes transfer their data to the mule when it comes into radio range and the collected data is in turn delivered to the sinks. By increasing the buffer size of the mules, fewer mules can service a sensor network albeit at the cost of a higher data delivery delay [73]. The message ferry protocol employs and controls a ferry node to collect, carry and deliver data from a source node to a destination node. The design of the ferry’s route is critical for the optimization of message ferry systems.

The underwater acoustic channels are featured with large attenuation, long propagation delay and limited feasible bandwidth [40]. In Underwater Acoustic Wireless Sensor Networks (UA-WSNs), the transmission power may be many times greater than the power required in terrestrial wireless sensor networks [60], and replacing or recharging batteries for underwater sensors is difficult or costly due to the harsh environment. Therefore, from the perspective of conservation of energy, the transmission range of sensor nodes in UA-WSNs is usually much shorter than that of the terrestrial counterparts, which limits communications between sensors. On the other hand, in the harsh ocean environment, the values of key decision variables for the optimization of underwater sensor networks are difficult (or very costly) to be determined before their deployment. Machine learning approaches (e.g. reinforcement learning [36, 82]) could be employed for the design of delay tolerant UA-WSNs in order to optimize the system parameters according to the dynamic environments. By using the reinforcement learning algorithm, the intelligent agent can self-adapt to the dynamic subsea environment according to its individual learning from direct interaction with the environment, without relying on exemplary supervision or complete models of the environment.

In this chapter, our research focuses on the development of a novel routing
protocol implementing the Q-Learning algorithm to DTNs in order to improve the performance of such systems in underwater environments. In the proposed system, the sensor nodes are assumed to be sparsely-distributed, energy-constrained, stationary, and consequently are not capable for the routing functionalities. Thus a ferry node is employed to travel around the deployment field and collect, carry and deliver data packets between sensors. By using the proposed protocol, the ferry node is capable of learning from the environment and then adaptively adjusting the relevant parameters of the networks.

The rest of this chapter is organized as follows. In section 2.2, the Q-Learning algorithm and some existing DTN approaches are briefly reviewed. The detailed implementations of the proposed system are described in section 2.3. Then, simulation configurations and results are given in section 2.4. Finally, the conclusion is drawn in section 2.5.

2.2 Related Works

2.2.1 Underwater Acoustic Communications

Characteristics of the underwater acoustic channels are significantly different from those of terrestrial radio frequency channels due to the failure potentialities and limited communication features (such as bandwidth limitations, limited ranges, or unexpected delays) of underwater communication channels. From the physical layer signal processing perspective, the most important challenges of underwater acoustics communications consisting of the extremely constrained channel bandwidth, the inevitable inter-symbol interference, the delay-induced inter-channel interference and severe Doppler effects, need to be solved. For a detailed introduction to these challenges, please refer to [60], [79] and [81]. The research presented in this thesis concentrates on the development of delay tolerant systems, thus it is presumed that these challenges have been solved by the transceiver using physical layer technologies such as OFDM [28, 53, 60].

The underwater acoustic communication channels are featured with large propagation delay (0.67s/km) [85], large delay variance and limited bandwidth [59, 85]. In the following, we give an introduction to the underwater acoustic
characteristics that are closely relevant to the network perspective of underwater acoustic networks.

The attenuation of an underwater acoustic channel is commonly described by the Urick’s model [85]. In Urick’s model, the overall attenuation, which is a function of signal frequency \(f \) and propagation distance \(d \), can be expressed as

\[
A(f, d) = d^k a(f)^d
\]

(2.1)

where \(a(f) \) is the absorption coefficient. Expressed in \(dB \), the acoustic attenuation is given by

\[
10 \log A(f, d) = 10k \log d + 10d \log a(f)
\]

(2.2)

For the frequency band over a few hundred Hz, the absorption coefficient can be expressed by Thorp’s empirical formula [11] as follows:

\[
10 \log a(f) = 0.11 \frac{f^2}{f^2 + 1} + 44 \frac{f^2}{f^2 + 4100} + 2.75 \cdot 10^{-4} f^2 + 0.003
\]

(2.3)

For lower frequency band, the formula is as follows:

\[
10 \log a(f) = 0.11 \frac{f^2}{f^2 + 1} + 0.011 f^2 + 0.002
\]

(2.4)

The attenuation equations (2.1) and (2.2) depict the energy loss on a single, unobstructed propagation path. For an acoustic link, with the increase of either carrier frequency or propagation distance, the attenuation increases dramatically, which limits the feasible bandwidth of the channel. The noise in an acoustic channel includes man-made noise and ambient noise, and is mainly from four sources: turbulence, shipping, waves, and thermal noise. The following formulas give the power spectral density (PSD) of these noise components in \(dB \) re \(\mu Pa/Hz \) as a function of frequency in \(kHz \) [40, 85]:

\[
\begin{align*}
10 \log N_t(f) &= 17 - 30 \log f \\
10 \log N_s(f) &= 40 + 20(s - 0.5) + 26 \log f - 60 \log (f + 0.03) \\
10 \log N_w(f) &= 50 + 7.5w^{0.5} + 20 \log f - 40 \log (f + 0.4) \\
10 \log N_{th}(f) &= -15 + 20 \log f
\end{align*}
\]

(2.5)
where the shipping activity s ranges from 0 to 1, corresponding to low and high activity, respectively, and w corresponds to the waves speed measured in m/s. The overall PSD of the ambient noise is given by \[N(f) = N_t(f) + N_s(f) + N_w(f) + N_{th}(f) \] (2.6)

Given the frequency-dependant attenuation $A(f, d)$ and noise level $N(f)$ of an underwater acoustic channel, the narrowband signal-to-noise ratio (SNR) is as follows

\[SNR(f, d) = \frac{S(f)}{A(f, d) N(f)} \] (2.7)

where $S(f)$ is the PSD of the transmitted signal, $A(f, d)$ and $N(f)$ are the attenuation and noise at the propagation distance d and carrier frequency f. We define the frequency f^* that maximizes $SNR(d, f)$ as the optimal carrier frequency, which is given as follows

\[f^*(d) = \arg \max_f \left\{ \frac{1}{A(f, d) N(f)} \right\} \] (2.8)

and the 3-dB bandwidth below the maximum of $SNR(d, f)$ (assuming that $SNR(f)$ is a constant) as the feasible bandwidth B of the channel. For simplicity of notations, let $AN(f)$ denote the product of attenuation $A(f, d)$ and noise $N(f)$ when the distance d is given. From Figure 2.1, it is observed that, with the increase of propagation distance d, the attenuation and noise level in an acoustic link becomes more severe, and the lower and upper boundaries of feasible bandwidth drops dramatically.

In the proposed work, the upper boundary of the underwater acoustic spectrum is set to 100kHz [59]. It can be observed in Figure 2.1 that the upper and lower frequencies of a realistic underwater acoustic communication channel are constrained by the propagation distance d. When d is small, the lower and upper boundaries are much larger than 0kHz. On the other hand, although the upper and lower boundaries decrease with the increase of d and are close to zero when d is extremely large, the product of attenuation and noise is extremely large at the same time, which makes the channel unrealistic. Some sample values of feasible bandwidth and channel boundaries at various propagation distances are given in
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

Figure 2.1: The lower and upper boundaries of an underwater acoustic communication channel and the corresponding energy loss versus the propagation distance [59]

Table 2.1.

2.2.2 Q-Learning Algorithm

In underwater communication systems, the values of key decision variables for the wireless sensor networks are difficult to be determined before deployments due to the harsh environments. Therefore, model-free intelligent algorithms (e.g. Q-Learning) can be used to optimize the system parameters according to the dynamic environments. In recent years, some underwater communication routing protocols and energy-efficient schemes employed the reinforcement learning algorithms [90, 91] to make the systems self-adaptive to the underwater environment. Reinforcement Learning (RL) [82] is one of the well known artificial intelligence algorithms that is capable of training an intelligent agent to interact with its environment so as to maximize the cumulative reward. In a reinforcement learning
framework, the interactions between an intelligent agent and the environment are usually modeled as a markov decision process (MDP) \[5, 35\] which is the 4-tuple \((S, A, P, r)\) where \(S\) is a finite set of system states, \(A\) is the discrete and finite action set, \(P\) is the collection of \(p_a(s, s')\) implying the probability that the system transits from state \(s\) at time \(t\) to state \(s'\) at time \(t+1\) by taking action \(a\), \(s, s' \in S\) and \(a \in A\), and \(r\) indicates the instant reward the agent derived when system state transits from \(s\) to \(s'\) by taking action \(a\) \[82\]. In a markov decision process, a policy \(\pi\) is defined as rule, by which the agent selects its action as a function of states, i.e. the policy \(\pi: S \times A \rightarrow [0, 1]\) represents the probabilities of taking action \(a\) when in state \(s\). The value of state \(s\) under a policy \(\pi\), denoted by \(v(s, \pi)\), is the expected reward of the agent in state \(s\) by following policy \(\pi\),

\[
v(s, \pi) = \sum_{t=0}^{\infty} \gamma^t E^\pi(r(s_t, a_t)|\pi, s_0 = s)
\]

where \(s\) is a particular state, \(s_0\) indicates the initial state, \(r(s_t, a_t)\) is the reward by taking action \(a_t\) at time \(t\), \(\gamma \in [0, 1]\) is the discount factor, \(E(\cdot)\) denotes the expectation of \((\cdot)\). The solution to a MDP could then be treated as an optimal policy \(\pi^*\) maximizing the agent’s long-term reward \[68\].

A learning problem arises when the agent does not know the reward function or the state transition probabilities. If an agent directly learns about its optimal policy without knowing the reward function or the state transition function, such
an approach is called model-free reinforcement learning, of which Q-Learning is one example. The Q-Learning algorithm is one of the off-policy reinforcement learning algorithms which enable the intelligent agent to update the estimated value functions using the actions which have not actually been executed. In a system with discrete and finite states and actions, the conventional Q-Learning algorithms require the intelligent agent(s) to create and maintain a q-table in which the state-action pairs and their corresponding q-values (i.e. the quality values of the state-action pairs) are itemized. Whenever an action is to be determined at a state, the agent looks up the q-table and evaluates all feasible actions at the current state. Then, the optimal action which maximizes the q-value is determined and carried out. The corresponding quality value of that optimal action is then updated to the maximum q-value. Many existing protocols and schemes [8, 10, 15, 24, 61] have shown the effectiveness of the conventional Q-Learning algorithm. The basic idea of Q-Learning is that we can define a function Q such that

$$Q^*(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s', \pi^*)$$ \hspace{1cm} (2.10)$$

By this definition, $Q^*(s, a)$ is the total discounted reward of taking action a in state s and then following the optimal policy thereafter. By Equations (2.9) and (2.10) we have

$$v^*(s, \pi^*) = \max_a Q^*(s, a)$$ \hspace{1cm} (2.11)$$

If we know $Q^*(s, a)$, then the optimal policy π^* can be found by simply identifying the action that maximizes $Q^*(s, a)$ under state s. The problem is then reduced to finding the function $Q^*(s, a)$ instead of searching for the optimal value of $v^*(s, \pi^*)$. In [16], the update rule of Q values is given as follows,

$$Q(s_t, a_t) \leftarrow (1 - \alpha_t)Q(s_t, a_t) + \alpha_t[r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')]$$ \hspace{1cm} (2.12)$$

where the α_t is the learning rate and satisfies $\sum_{t=1}^{\infty} \alpha_t(s_t, a_t) = \infty$ and $\sum_{t=1}^{\infty} \alpha_t^2(s_t, a_t) < \infty$. Then, the optimal action a_t^* at state s_t is defined as the action maximizing the
2.3. SYSTEM DESCRIPTIONS

value of $Q(s_t, a_t)$, as shown by the following equation,

$$a_t^* = \arg \max_{a_t \in A_{s_t}} \{Q(s_t, a_t)\}$$ \hspace{1cm} (2.13)

where the A_{s_t} is the set of feasible actions at state s_t. The procedure to implement Q-Learning algorithm is summarized in the following [82]

<table>
<thead>
<tr>
<th>Algorithm 1: Q-Learning algorithm description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initializing the quality value $Q(s, a)$ for all state-action pairs;</td>
</tr>
<tr>
<td>Initializing state s_t at $t = 0$;</td>
</tr>
<tr>
<td>for each iteration step t do</td>
</tr>
<tr>
<td>Evaluating the quality value for all feasible actions at s_t as follows;</td>
</tr>
<tr>
<td>$(1 - \alpha_t)Q(s_t, a_t) + \alpha_t[r(s_t, a_t) + \gamma \max_{a' \in A_{s_{t+1}}} Q(s_{t+1}, a')]$;</td>
</tr>
<tr>
<td>Determining the optimal action a_t^* achieving the max quality value at state s_t using Equation (2.13);</td>
</tr>
<tr>
<td>Update $Q(s_t, a_t^*)$ using Equation (2.12);</td>
</tr>
<tr>
<td>Carrying out $a_t^$ and observing reward $r_t(s_t, a_t^)$ and end state s_{t+1};</td>
</tr>
<tr>
<td>$s_t \leftarrow s_{t+1}$;</td>
</tr>
</tbody>
</table>

2.3 System Descriptions

In this section, we employ the Q-Learning algorithm to model a distributed delay tolerant UA-WSN. In the proposed system, a UA-WSN which consists of n static sensor nodes anchored on the seabed and one mobile ferry node, is modeled as a single agent Q-Learning system.

In the proposed system, the maximum transmission power of each sensor node is constrained by the limited battery energy, which results in a relatively small transmission range. As a result, the transmission areas of any two sensors do not intersect. In other words, the sensors cannot communicate between each other for exchanging information. Moreover, for the purpose of preserving energy, each sensor node periodically transits between two operational states: active state (high-power fully functional mode) and sleep state (low-power partially functional mode) [46]. In the active state, the sensors are fully functional and are able to transmit and receive, while in the sleep state, the sensors are just partially
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

Each node (e.g. sensor node i) switches to the active state according to a Poisson process with a rate λ_i (in times/second). As a result, within a unit of time (i.e. one second), the probability that node i switches to the active state for k times is expressed as follows,

$$p_i(k) = e^{-\lambda_i} \frac{\lambda_i^k}{k!} \quad (2.14)$$

The probability that sensor node i remains in the sleep status (i.e. $k = 0$) for one second is

$$p_{s,i} = p_i(k = 0) = e^{-\lambda_i} \quad (2.15)$$

In either state, each sensor node keeps generating data packets at random intervals and stores these packets in the local buffer as a first-in-first-out queue with tail-drop. The destination of these outgoing packets may be any sensor node except the ferry node and the generating node itself. Let $G = \{g_1, g_2, \cdots, g_n\}$ denote the vector of generating rates of the n sensor nodes. The generating rates may be different between nodes.

Compared with the sensor nodes, the ferry node is much more powerful in terms of energy supply, storage space and computing capabilities. It is assumed that the storage space and battery power of the ferry node are infinite. Moreover, the ferry node is equipped with mobility and is able to continually travel around the deployment area to collect/deliver data packets from/to sensors.

Additionally, it is assumed that there are a number of way-points in the deployed area, each of which is defined as a specific position where the ferry node can communicate with a specific sensor node(s). Obviously, a way-point must be within the transmission range of at least one sensor node. Since there is no intersection between the transmission areas of any two sensors, each sensor node must have at least one unique way-point. The sensor i is the host node of way-point w_i. In the proposed system, we assume that each sensor node, e.g. node i, has one, and only one, dedicated way-point denoted by w_i, which is statically located at the position of its host sensor.

The ferry node’s traveling route comprises a set of segments, each of which connects two way-points. As a result, the path of the ferry node traversing the transmission area of the targeting sensor is a folded line crossing the desired way-
2.3. SYSTEM DESCRIPTIONS

The traversing time T_v is defined as the time period that the ferry node spends on the traversing path of a sensor node. Given a constant traveling speed v of the ferry node, $T_v = 2r/v$ where r is the radius of sensor node’s transmission range. The ferry node has the freedom to determine the order of the way-points it visits (i.e. dynamic traveling route). The speed and direction of the ferry node are assumed to be unchanged between any two way-points (i.e. the ferry node travels along a straight line between two way-points at a constant speed).

When travelling into the transmission range of a target sensor (the host sensor of a specific way-point), the ferry node broadcasts beacon packets at a constant rate to detect the presence of its target sensor node in the surrounding area. Each active sensor node keeps listening to the underwater channel. If the beacon packet is heard by the desired sensor which indicates that the ferry node has traveled into the transmission range of this sensor node, an acknowledgement packet is immediately generated by the sensor and sent back to the ferry node. After receiving the acknowledgement packet, the ferry node looks up its local buffer and delivers (uploads) the data packets targeting this sensor, and then collects (downloads) all data packets from the sensor’s local buffer to the ferry node. The upload and download processes are called a service.

Moreover, the traveling speed of the ferry node ($0.5 \sim 10 m/s$) is much slower than the velocity of acoustic wave in underwater environment, and it is assumed that the ferry node doesn’t stop its travel during services. In the proposed system, sensor nodes exchange packets by the regular visiting of the ferry node. The contacts between the ferry node and sensor nodes become critical since the successful delivery of data packets totally depends on whether the ferry can contact the sensor nodes during their active states. When arriving at a way-point, if the ferry node cannot receive an acknowledgement from the host sensor, the ferry node assumes that the host sensor is in the sleep state. In this situation, instead of moving to the next way-point immediately, the ferry node stays at the current way-point for a period which is the “waiting time” denoted by T_w to increase the meeting probability with the specific sensor. During this period, the ferry node keeps broadcasting beacon messages. If the sensor node enters the active state before the end of the waiting period and responds to the ferry node, the association between the ferry and sensor is established and a service starts. The
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

ferry node keeps a record of the most recent time that it services the sensors, i.e. \(T_r = \{t_{r1}, t_{r2}, \ldots, t_{rn}\} \).

2.3.1 System State Space

In the proposed system, the whole network is considered as a single agent Q-Learning system [36]. The system states are discrete and related to the sensor node which is being visited by the ferry node. In a network with \(n \) nodes, when the ferry node arrives at the targeting sensor node \(j \) at time \(t \), the system state is defined as

\[
 s_t = j, j = 1, 2, \ldots, n
\]

Therefore, the state space \(S \) which is defined as the collection of system states is \(S = \{1, 2, \ldots, n\} \).

2.3.2 Action Set

An action of the proposed system is defined as the ferry node’s visiting a specific way-point. By carrying out an action \(a_t = i \) at time \(t' \), the ferry travels to the node \(i \) and the system state transits to \(s_t = i \) when the ferry node reaches the way-point \(w_i \) at time \(t \). After servicing the sensor node \(i \), the ferry node needs to determine its next action (i.e. next way-point). The selection of the optimal action depends on the evaluation of all feasible actions at the current state, i.e. all the sensor nodes except current node \(i \). Let \(A_i = \{1, \cdots, i-1, i+1, \cdots, n\} \) denote the collection of sensors except node \(i \), the action set at time \(t \) is defined as \(A_t = A_{i-} \).

In the example shown in Figure 2.2, the system state at time \(t \) is \(s_t = i \). The action set is \(A_t = \{j_1, j_2, j_3\} \). If the ferry determines \(j_2 \) as its optimal action at the current state (i.e. \(a_t = j_2 \)), the system state transits to \(j_2 \) (i.e. \(s_t = j_2 \)) by carrying out \(a_t \).

2.3.3 Reward Function

The proposed protocol aims to reduce the end-to-end delivery delay of data packet, which is defined as the time required for the ferry node to deliver the
packet from a given node (i.e. source) to a destination. In the design of reward function, the main considerations include the ferry node’s traveling distance, the sensor node’s queue length and the waiting time. Given the current state \(s_t = i \) and action \(a_t = j \), the ferry node’s current position is the same as the way-point of sensor node \(i \) (i.e. \(w_i \)) and the next way-point that the ferry node will visit is \(w_j \) corresponding to the host sensor node \(j \). As a result, the reward is defined as follows,

\[
 r_{ij} = d_{ij} + u_{ij} + q_{ij} \tag{2.17}
\]

where \(d_{ij}, u_{ij} \) and \(q_{ij} \) are obtained in the following.

1. Traveling Distance Factor: \(d_{ij} \)
 When a ferry node travels between two way-points, longer distance between the way-points causes longer traveling time which may result in generating
and storing more data packets at all sensor nodes. For the purpose of reducing the delivery delay and the number of packet drop, the ferry node prefers to select the node at a relatively shorter traveling distance to visit. Let \(d(w_i, w_j) \) denote the distance between the two way-points \(w_i \) and \(w_j \). Then the Traveling Distance Factor \(d_{ij} \) is defined as:

\[
d_{ij} = -\frac{d(w_i, w_j)}{d_{\text{max}}}
\]

(2.18)

where \(d_{\text{max}} \) is the maximum distance between any two way-points, i.e.

\[
d_{\text{max}} = \max_{x,y=1,...,n}\{d(w_x, w_y)\}.
\]

From (2.18), the lower \(d(w_i, w_j) \) is, the higher value \(d_{ij} \) is, which indicates that short traveling distance deserves high rewards.

2. Waiting Time Factor: \(u_{ij} \)

In each visit, the meeting probability \(p_m \) between the ferry node and a sensor (e.g. sensor \(j \)) is dominated by the sleep probability of sensor \(j \), which can be expressed as follows

\[
p_m(j) = 1 - (p_{s,j})^{T_v+T_w}
\]

(2.19)

where \(p_{s,j} \) is the probability that a sensor remains in its sleep state in a unit time (i.e. one second), \(T_v \) and \(T_w \) are the traversing time and waiting time, respectively. The probability that the sensor remains in the sleep state within the ferry node’s traversing time is therefore \((p_{s,j})^{T_v} = e^{-T_v\lambda_j} \).

Thus the meeting probability during the traversing time between the ferry node and the sensor node \(j \) is given as follows

\[
p_{mt}(j) = 1 - e^{-T_v\lambda_j}
\]

(2.20)

From (2.20), the meeting probability during traversing is a function of the traversing period and \(\lambda \).

Given a pre-specified minimum meeting probability \(p_m \), from (2.19) and
(2.20), the length of a waiting period is estimated as follows

\[
T_{w,j} = \begin{cases}
0 & \text{if } p_{mt}(j) \geq p_m, \\
\log_{p_s,j}(1 - p_m) - T_v & \text{otherwise}
\end{cases}
\]
\text{(2.21)}

Then the waiting time factor \(u_{ij} \) is defined as:

\[
u_{ij} = -\frac{T_{w,j}}{T_{w,j,\max}}
\]
\text{(2.22)}

where \(T_{w,j,\max} \) is the maximum waiting period which is defined as \(T_{w,j,\max} = \log_{p_s}(1 - p_m) \). From (2.22), the lower \(T_{w,j} \) is, the higher value \(u_{ij} \) is, which indicates that short waiting period deserves high rewards.

3. Queue Length Factor: \(q_{ij} \)

The generated data packets are stored in each sensor node’s local buffer as a first-in-first-out queue with tail-drop. Given node \(j \)'s generating rate \(g_j \), the expected number of data packets generated between the ferry node’s two successive visits is expressed as follows, shown as follows.

\[
n_j = g_j(t_{\text{now}} - t_{rj}) + g_j t_{ij}
\]
\text{(2.23)}

where \(t_{\text{now}} \) is current time, \(t_{rj} \) is the ferry node’s last visiting time to node \(j \), \(t_{ij} \) is the traveling time from current way-point (e.g. \(w_i \)) to its potential targets (e.g. \(w_j \)), which is expressed as \(t_{ij} = d(w_i, w_j)/v \) where \(v \) is the constant traveling speed of ferry and \(d(w_i, w_j) \) is the distance between the way-points \(w_i \) and \(w_j \). Given the maximum queue length \(q_{\text{max}} \), the queue length factor \(q_{ij} \) is defined as follows

\[
q_{ij} = \begin{cases}
1 & \text{if } n_j \geq q_{\text{max}}, \\
\frac{n_j}{q_{\text{max}}} & \text{otherwise.}
\end{cases}
\]
\text{(2.24)}

From (2.24), the lower \(n_j \) is, the lower value \(q_{ij} \) is, which indicates that short buffer queue deserves low rewards.
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

2.4 Simulations

In this section, we apply the proposed Q-Learning based protocol to various network topologies and use simulation results to demonstrate the effectiveness and efficiency of our proposed protocol. The random-walk based data mules protocol and the shortest-path based message ferry protocol are also implemented as benchmarks. The detailed configurations and results of simulations are given as follows.

2.4.1 Configurations

We consider a randomly generated network consisting of $n = 20$ nodes uniformly and sparsely deployed over a $2000m \times 2000m$ square area. The maximum transmission range of sensor nodes is 50 meters. Each node independently generates data packets according to a Poisson process with rate g packets/second where $g \in [0.01, 0.05]$. Note here that the generating rates may be different between sensor nodes. The maximum length of buffer queue is 500 packets for all sensors. The traveling speed of the ferry node varies from $0.5m/s$ to $10m/s$ in $0.5m/s$ increments. The maximum waiting time for the proposed Q-Learning based protocol is set to be 5 seconds, but for the random-walk based and shortest-path based protocols, the waiting time is set to be zero, i.e. the ferry node doesn’t wait at the way-point when the response is not heard from the targeting sensor node. The pre-specified meeting probability p_m is set to be 0.8. The sleep/active switching rate is set to be λ times/second where $\lambda \in [0.005, 0.07]$. In the Q-Learning implementations, the discount factor $\gamma = 0.5$, and the learning rate $\alpha_t = 1/t$, $t = 1, 2, \cdots$. The simulation results are shown in section 2.4.2. Each simulation runs 5×10^5 seconds and the simulation results are recorded. Each data point is the average of twenty independent simulations.

2.4.2 Simulation Results

Figure 2.3 compares the average delivery delay among the three protocols. The simulation result shows that the average delivery delay in all three protocols decreases with the increase of the the ferry node’s speed. These results are rea-
sonable since a faster speed of the ferry leads to a shorter traveling period which consequently shortens the delivery delay. At a low traveling speed (0.5 ~ 2m/s), the probability p_{mt} that the ferry meets a sensor in the traversing period is relatively high in all three protocols due to the long traversing time caused by the low speed of the ferry. In the Q-Learning based approach, the high p_{mt} leads to a short waiting period which discounts the waiting time factor used in the reward function. On the other hand, the low traveling speed slows the learning process of the intelligent agent of the Q-Learning based approach, which results in a long delivery delay of the Q-Learning based protocol. With the increase of the speed of the ferry, p_{mt} keeps decreasing. In the shortest path based and the random walk based approaches, the delivery delay becomes large since the ferry keeps traveling regardless of a descent meeting probability p_{mt}. On the other hand, the ferry node in the Q-Learning based protocol adaptively adjusts its waiting periods at the way-points to increase the meeting probabilities with the sensors. Thus the delivery delay of the Q-Learning based protocol is significantly shortened when the speed is greater than 6.5m/s.

Figure 2.4 compares the ferry node’s traveling distance averaged on each delivered packet. It shows that the average traveling distance increases dramatically with the increase of the ferry node’s speed in the shortest path based and random walk based approaches because a faster traveling speed of the ferry reduces the meeting probability during traversing period, which causes less number of delivered packets and longer traveling distance. On the other hand, since the ferry in the Q-Learning based approach is able to adaptively adjust its waiting periods at the way-points to increase the meeting probabilities, the result of the Q-Learning based protocol is relatively stable. When the speed is greater than 6.5m/s, the ferry node in the Q-Learning based protocol travels the shortest distance to deliver a packet.

In Figure 2.5, we compare the average meeting probabilities of the ferry node and sensor nodes between the Q-Learning based, the shortest path based and the random walk based protocols. When the speed of the ferry node ranges between 0.5m/s and 1.5m/s, the average meeting probabilities of the three protocols are almost the same. When the ferry’s speed increases from 1.5m/s, the meeting probabilities in the random walk based and the shortest path based approaches
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

Figure 2.3: delivery delay versus speed of ferry node

Figure 2.4: Ferry node’s traveling distance per delivered packet versus speed of ferry node
dramatically decrease due to the shorter traversing time caused by the faster speed of the ferry. On the other hand, the average meeting probability in the Q-Learning based protocol outperforms the other two protocols and converges to 0.8 which is a pre-specified meeting probability. This result is consistent with Figure 2.4.

Figure 2.6 compares the variance of meeting probabilities among these three protocols. It shows that the variance of the meeting probabilities of the Q-Learning based protocol is much lower than that of the random walk based and the shortest path based approaches. When the speed of the ferry node increases from 1.5m/s, the variance decreases dramatically and remains stable, which is consistent with Figure 2.5 where the average meeting probabilities comparisons are shown. The Q-Learning based approach enables the ferry node to adaptively adjust its waiting time at way-points and the order of its visits so that the meeting probabilities of the ferry node and sensors distribute evenly across the network, which leads to a low variance.

2.5 Conclusion

Current researches on DTNs rely on increasing the meeting probabilities of sensors, which are important for keeping a good throughput and a relatively short delivery delay. In underwater acoustic wireless sensor networks (UA-WSNs), this problem becomes challenging due to the unique properties of underwater environments. In this chapter we proposed a Q-Learning based protocol which is used to reduce the delivery delay and delivery cost by maximizing the meeting probabilities between the ferry node and the sensor nodes. Through simulations, we have demonstrated the feasibility and efficiency of the protocol in UA-WSNs.
2. A REINFORCEMENT LEARNING BASED ENERGY EFFICIENT PROTOCOL FOR UA-WSNS AND ITS IMPLEMENTATION

Figure 2.5: Average meeting probabilities versus speed of ferry node

Figure 2.6: Variance of meeting probability versus speed of ferry node
Chapter 3

A Neural-Q-Learning Based Approach for Delay Tolerant Underwater Wireless Sensor Networks

3.1 Introduction

In underwater communication systems, the values of key decision variables for the wireless sensor networks are difficult to be determined before deployments due to the harsh and dynamic environments. Therefore, many intelligent algorithms (e.g. Q-Learning) are employed to optimize the system parameters according to the environment. In recent years, many underwater communication routing protocols and energy-efficient schemes [18, 36, 37, 57, 70, 89] employed the Q-Learning algorithm which is one of the widely used machine learning algorithms to make the systems self-adaptive to the environment. The intelligent agent of a conventional Q-Learning system with discrete state space and action set creates and maintains a lookup table (named q-table) to store the state-action pairs and their corresponding q-values (i.e. quality values of the state-action pairs). Whenever an action is to be determined at a state, the agent looks up the q-table to evaluate and compare the quality values of all feasible actions at
the given state. The optimal action which achieves the highest quality value is then determined and carried out by the agent. Correspondingly, the q-value of the optimal action is updated to the maximum quality value. In recent decades, many existing protocols and schemes have shown the effectiveness of the conventional Q-Learning algorithms. However, these algorithms become inefficient when the number of the feasible actions (i.e. the entries of state-action pairs in the q-table) is large since the agent has to evaluate and compare the quality value of all the actions to determine the optimal one, or even infeasible if the action set is continuous (i.e. infinite entries in the q-table) [9, 21, 51, 84]. As a result, it is necessary to develop an effective and efficient method to determine the optimal action in a large, or even continuous, action set at a given system state.

In this chapter, we propose a Neural-Q-Learning (NQL) [26, 39] based delay-tolerant protocol for underwater acoustic wireless sensor networks (UA-WSNs). The proposed NQL protocol reduces the delivery delay by enabling the ferry (i.e. the NQL agent) to find an efficient and relatively short traveling route which inter-connects the optimized way-points to deliver data packets between sensors. The optimal position of the way-points which are dynamic in a two-dimensional continuous space is determined by the ferry based on its independent learning from the environment. Compared with the conventional Q-Learning algorithms, the NQL agent avoids searching a large or infinite lookup table. More specifically, a delay-tolerant underwater acoustic wireless sensor network (UA-WSN) is modeled as a single agent NQL system [26, 38, 39, 58], in which an artificial neural network (ANN) along with a wire-fitting interpolator are employed to produce a continuous q-curve to replace the discrete q-table used in the conventional Q-Learning algorithms. At a given state, the ANN first reads in the system state as input parameter and outputs a fixed number of samples (known as “control wires” or “wires” in short), each of which consists of an action and the corresponding quality value of the action at the given state. Then, the wire-fitting interpolator uses these wires to fit a continuous curve which describes the relationship of the quality value and the action in a continuous manner. By adopting the q-curve, the agent is capable of effectively and efficiently determining the optimal action which achieves the greatest function value(s) of the q-curve. Since the performance of the proposed system greatly depends on the q-curve, it is necessary to
3.1. INTRODUCTION

keep improving the performance of the ANN and the wire-fitting interpolator to produce accurate q-curves. Once an optimal action is determined and carried out, the agent evaluates the instant reward/penalty obtained from the environment, and calculates a practical quality value which is then used to reposition the existing wires. The repositioned wires are used not only by the wire-fitting interpolator to re-generate the q-curve, but also to train the ANN to improve the accuracy of the produced wires.

In the proposed delay tolerant UA-WSN, the network consists of a mobile ferry node and a number of static sensors. The sensors are assumed to be sparsely-distributed, energy-constrained, stationary, and consequently are not capable of peer to peer sensor communications. Thus a ferry is employed to travel around the deployment field to collect, carry and deliver data packets between sensors. A specific position where the ferry contacts with a specific sensor is known as a way-point. The traveling route of the ferry consists of a number of segments, each of which connects two way-points. The ferry has the freedom to determine the position and the order of the way-points to be visited according to its independent learning. The state of the NQL system is presented by the index number of the sensor which is being visited by the ferry at the given time instant. The action of the intelligent agent is defined as a specific way-point which is to be visited by the ferry. Since the position of a way-point is not fixed and can be arbitrary within the transmission range of its host sensor, the action set is a continuous two-dimensional space. Whenever an optimal action (i.e. the optimal position of a way-point to be visited by the ferry) is to be determined, the ferry selects the optimal way-point which achieves the greatest function value(s) of the q-curve. Simulation results show that the NQL system improves the system performance by maximizing the meeting probabilities between the ferry and the sensors on the optimized traveling route.

The rest of this chapter is organized as follows. In section 3.2, the artificial neural network is briefly reviewed, followed by the introduction of the Neural-Q-Learning algorithm. The detailed implementations of the proposed system are described in section 3.3. Then, simulation configurations and results are given in section 3.4. Finally, the conclusion is drawn in section 3.5.
3.2 Related Work

In a markov decision process system with discrete and finite states and actions, the conventional Q-Learning algorithms require the intelligent agent(s) to create and maintain a q-table in which the state-action pairs and their corresponding q-values (i.e. the quality values of the state-action pairs) are itemized. Whenever an action is to be determined at a state, the agent looks up the q-table and evaluates all feasible actions at the current state. Then, the optimal action which maximizes the q-value is determined and carried out. The corresponding quality value of that optimal action is then updated to the maximum q-value. Many existing protocols and schemes have shown the effectiveness of the conventional Q-Learning algorithm. However, the conventional Q-Learning algorithm becomes inefficient when the number of feasible actions (i.e. the entries of state-action pairs in the q-table) is large since the agent has to evaluate and compare each of them to determine the optimal action. If the action set is continuous, the look-up process of the conventional Q-Learning algorithms will be infeasible. As a result, it is necessary to develop an effective and efficient method to determine the optimal action in a large, or even continuous, action set at a state.

In this chapter, the proposed system with a continuous action set employs a Neural-Q-Learning approach to determine the optimal position of way-points in a two-dimensional continuous space. These optimized way-points lead to an efficient traveling route to reduce the delivery delay and delivery cost. The related works are briefly reviewed in this section. More specifically, the conventional Q-Learning algorithms, the neural network and the Neural-Q-Learning algorithm are introduced.

3.2.1 The Artificial Neural Network

An artificial neural network (ANN) [29, 32] is a mathematical model consisting of a number of interconnected artificial neurons. In most applications, a neural network is used as an intelligent and self adaptive system which adjusts its own parameters during a learning phase. Figure 3.1 shows a typical neural network consisting of three layers: input layer, hidden layer and output layer. Each layer contains a number of artificial neurons which are interconnected with other
neurons on the adjacent layers. Each artificial neuron has an activation function, $f(x)$, which maps the input, x, to the neuron’s output. The activation function of different neurons may be different, but in most cases, the neurons in the same layer employ identical activation functions. Nowadays, the most commonly used activation functions consists of the log-sigmoid function, tan-sigmoid function and the linear combination function [94]. On the other hand, given a fixed number of neurons, the structure of the ANN is determined by the connections (links) between neurons. Each link connects two neurons and is assigned a weighting coefficient to indicate the importance of the link, e.g. u_{ij} indicates the weighting coefficient of the link connecting neurons i and j. The output y_i is weighted by multiplying the weighting coefficient u_{ij} before feeding into neuron j. If there is more than one input link connecting to neuron j, the input value of neuron j’s activation function is the weighted sum of all the input links, i.e. $x_j = \sum_{k\in K} y_k u_{kj}$ where K is the set of the neurons feeding input value to the neuron j. If the structure of the ANN is directed acyclic, the system is known as a feed-forward ANN [34], otherwise the networks with cycles are commonly called recurrent [19].

3.2.2 The Neural-Q-Learning Algorithm

The artificial neural network based Neural-Q-Learning algorithm was first introduced in [86]. In the NQL algorithm, the action set is assumed to be continuous at a given state which is discrete and finite. A continuous q-curve explicitly describing the relationship between the action and the corresponding q-value is introduced to replace the q-table used in the conventional Q-Learning algorithms. The agent of NQL determines the optimal action by searching the action that maximizes the q-value in the q-curve. This approach improves the efficiency of the Q-Learning algorithm in a system with a large action set by avoiding searching through a large lookup table.

The effectiveness of the proposed NQL system greatly depends on the q-curve generated by an approximation method which is known as the wire-fitting technique [86]. The wire-fitting technique consists of an ANN algorithm and a moving least square (MLS) interpolation method [22, 52]. Initially, by reading
the system state as the input parameter, the ANN outputs a number of actions along with their corresponding q-values. Each action and its quality value at the given state are named a “wire”. Note that, given a fixed structure for the ANN, the number of output wires remains unchanged. Then, a moving least square method is employed to interpolate these wires and fit a continuous q-curve. Once the q-curve of a given state is generated, the NQL agent then determines the optimal action by searching for the maximum values of the q-curve. By carrying out the optimal action at a given state, the system transits to its next state.

Moreover, the efficiency of NQL systems can be improved by using a q-curve with high accuracy which relies on the wires generated by the ANN, thus we employ the back-propagation method [69] to train the ANN to produce the wires with high accuracy. After carrying out an optimal action a at a given state s, the system transits to its next state s' and the NQL agent obtains an instant reward $r(s, a)$ from the environment. Accordingly, a practical quality value $Q(s, a)$ of

Figure 3.1: A three-layer artificial neural network
3.3. SYSTEM DESCRIPTION

action a at state s can be evaluated as follows.

$$Q(s, a) \leftarrow (1 - \alpha_t)Q(s, a) + \alpha_t[r(s, a) + \gamma \max_{a'} Q(s', a')] \quad (3.1)$$

where γ is the discount factor and α_t is the learning rate which satisfies $\sum_{t=1}^{\infty} \alpha_t = \infty$ and $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$. This practical quality value is more accurate than the one approximated by ANN and the wire-fitting interpolator. Consequently, based on the practical q-value along with the selected optimal action a, the agent uses the gradient-descent method (the partial derivative method) [26] to reposition the existing wires. The repositioned wires are then used (as the desired output) to train the ANN with back propagation method [33, 44, 69] so as to improve the accuracy of the future approximations of ANN. Also, these repositioned wires are used by the wire-fitting interpolator to generate a new q-curve. Figure 3.2 shows the flow chart of the neural Q-Learning algorithm.

3.3 System Description

In this section, we describe the proposed Neural-Q-Learning (NQL) algorithm as applied in a distributed delay tolerant UA-WSN. In the proposed system, a UA-WSN consisting of m static sensors and one mobile ferry is modeled as a single agent NQL system.

Due to the constrained battery power, the transmission range of each sensor is very limited. As a result, the transmission area of any two sensors does not overlap and the sensors cannot communicate with each other for exchanging information. Moreover, for the purpose of conserving energy, each sensor periodically transits between two operational states: the active state (high-power fully functional mode) and the sleep state (low-power partially functional mode). In the active state, the sensor is fully functional and is able to transmit and receive, while in the sleep state the sensor cannot take part in the network activity. Each sensor switches to the active state according to a Poisson process with a rate λ (in times/second). Within a unit of time (i.e. one second), the probability that the sensor switches to the active state for k times is expressed as $p(k) = e^{-\lambda} \lambda^k / k!$. As
a result, the probability of that sensor remaining in the sleep state (i.e. $k = 0$) in one second is $p_s = p(k = 0) = e^{-\lambda}$. In either state, each sensor keeps generating data packets at random intervals (i.e. according to environmental phenomenon) and stores these packets in the local buffer as a first-in-first-out queue with tail-drop. Note here that the generating rates may be different among sensors.

Compared with the sensors, the ferry is much more powerful in terms of energy supply, storage space and computing capacities. Thus, we assume that the storage space of the ferry is infinite. On the other hand, the ferry is equipped with mobility and is capable of continually traveling around the deployment area to collect/deliver data packets from/to sensors. The traveling route of the ferry comprises a set of segments. Each of these segments connects two way-points,
each of which is defined as a specific position where the ferry can communicate with a certain sensor. Obviously, a way-point must be within the transmission range of at least one sensor. Since there is no intersection between the transmission areas of any two sensors, each sensor, e.g. sensor i, must have a unique and dedicated way-point denoted by w_i. The sensor i is known as the host sensor of w_i. Note here that the positions of way-points are dynamic within the transmission range of their host sensors and are determined by the ferry. We also assume that the speed and direction of the ferry do not change when traveling between any two way-points (i.e. the ferry travels along a straight line between two way-points at a constant speed). When traveling into the transmission range of a target sensor (the host sensor of a specific way-point), the ferry broadcasts beacon packets at a constant rate to detect the presence of its target sensor in the surrounding area. All the sensors keep listening to the underwater channel. If the beacon packet is received by the desired sensor, an acknowledgement packet is generated by the sensor and sent to the ferry immediately. After receiving the acknowledgement packet, the ferry looks up its local buffer and transmits (uploads) the data packets targeting to this sensor and collects (downloads) all the data packets from this sensor’s local buffer. The upload and download process is known as a service. The traveling speed of the ferry ($0.5 \sim 10 m/s$ [7]) is much slower than the propagation speed of acoustic wave in the underwater environment ($1500 m/s$ [85]), thus it is assumed that the ferry doesn’t stop its travel during services.

3.3.1 Neural-Q-Learning Framework

3.3.1.1 System State Space

In the proposed system, the whole network is considered as a single agent Neural-Q-Learning system [26]. The system states are discrete and related to the sensors that the ferry visits. For instance, when the ferry is visiting and servicing sensor i at time t, the system state is defined as $s_t = i$. Consequently, the system state space denoted by S is discrete and finite, i.e. $S = \{1, 2, \cdots, m\}$.
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

3.3.1.2 Optimal Action and Action Set

An action \(a \) of the NQL agent is defined as a specific way-point that the ferry targets to visit. For instance, after servicing sensor \(i \) at time \(t \) (i.e. \(s_t = i \)), the action of the ferry is to travel to the next way-point to service the host sensor of that way-point. Since sensor \(i \) has been serviced, both the ferry and the sensor \(i \) do not have buffered packet to exchange. As a result, sensor \(i \) is excluded from the set of sensors to be serviced. Thus the action set at time \(t \) is defined as \(A_t = \bigcup_{k \in i^-} R_k \) where \(i^- = \{1, \cdots, i - 1, i + 1, \cdots, m\} \) and \(R_k \) is the transmission area of sensor \(k \). Let \(w_j \) denote the selected target way-point, the action at time \(t \) is defined as \(a_t = w_j \), where \(w_j \in \bigcup_{k \in i^-} R_k \) and \(a_t \in A_t \). Apparently, the action set \(A_t \) is continuous due to the continuity of the transmission area \(R \) of each sensor.

The target of the agent is to determine the optimal position of way-points, which achieves the maximum quality value. At a given state, e.g. \(s_t = i \), the highest quality value \(q_t^* \) that the ferry can achieve is

\[
q_t^* = \max_{k \in i^-} q_t^*(k) = \max\{q_t^*(1), \cdots, q_t^*(i - 1), q_t^*(i + 1), \cdots, q_t^*(m)\} \tag{3.2}
\]

where \(q_t^*(k) = Q(s_t, a_{tk}^*) \) and \(a_{tk}^* = \arg \max_{a_{tk} \in R_k} Q(s_t, a_{tk}) \). Correspondingly, the target sensor to be visited by the ferry is sensor \(j \) where \(j = \arg \max_{k \in i^-} q_t^*(k) \) and the optimal action (i.e. the optimal position of the way-point of the target sensor \(j \)) is \(a_t^* = a_{tj}^* = \arg \max_{a_{tj} \in R_j} Q(s_t, a_{tj}) \).

In the example shown in Figure 3.3, the system state at time \(t \) is \(s_t = i \). The shadowed area indicates the action set \(A_t = \bigcup_{k \in i^-} R_k = R_{j_1} \cup R_{j_2} \cup R_{j_3} \) which is the union of the three shaded circles. If the ferry determines \(w_{j_2} \) as its optimal action at the current state (i.e. \(a_t^* = w_{j_2} \)), the system state transits to \(j_2 \) (i.e. \(s_{t'} = j_2 \)) by carrying out \(a_t^* \).

Furthermore, by using polar coordinates, the position of a way-point \(w_i \) relative to its host sensor (e.g. the sensor \(i \)) can be represented by \((\theta_{wi}, r_{wi})_i\), where \(\theta_{wi} \) and \(r_{wi} \) are the angle and distance of the way-point \(w_i \) relative to the position of its host sensor \(i \). In other words, an action \(a \) is interpreted as the polar coordinates of the way-point \(w_i \), i.e. \(a = (\theta_{wi}, r_{wi})_i \), where \(\theta_{wi} \in [0, 2\pi], r_{wi} \in [0, r] \)
and r is the maximum transmission range of the sensor. Given x_i and y_i as the coordinates of the sensor i, the coordinates of the way-point w_i are given by $x_{w_i} = x_i + r_{w_i} \cos(\theta_{w_i})$ and $y_{w_i} = y_i + r_{w_i} \sin(\theta_{w_i})$, as shown in Figure 3.4.

3.3.2 Generating the Q-Curve

Differing from the conventional Q-Learning algorithms, the proposed NQL system approximates the optimal action by searching the maximum value(s) of a continuous q-curve which is produced by an ANN along with a wire-fitting interpolator. The ANN is used to generate a fixed number of discrete samples (known as control wires) which are then used in the wire-fitting interpolator to fit a continuous q-curve. In this section, the implementation details of both techniques are depicted.
3.3.2.1 The ANN Implementation

The proposed Neural-Q-Learning system [86] employs the Artificial Neural Network (ANN) technique to produce a fixed number of discrete wires, each of which represents an action and the corresponding quality value of the action at the given state. The ANN used in the system has a typical fully connected feed-forward structure [3, 62] which consists of an input layer, a hidden layer and an output layer.

The coordinates of the ferry’s position denoted by x_f and y_f are used as the input parameters to the ANN. As a result, there are only two neurons in the input layer. In the output layer, the neurons produce the elements for the control wires. Let $\Omega = \{\omega_1, \cdots, \omega_N\}$ denote the collection of the produced N wires where ω_k is the k-th wire. Each wire is a 3-tuple consisting of ζ_θ, ζ_r and ζ_q which correspond to the polar coordinates (θ_{w_i}, r_{w_i}) of a specific way-point w_i and its corresponding quality value q_{w_i}. Therefore, the ANN needs $3N$ neurons in the output layer to produce the N wires. Furthermore, the log-sigmoid functions are

![Figure 3.4: The polar coordinates of a way-point relative to its host sensor](image-url)
3.3. SYSTEM DESCRIPTION

Figure 3.5: The structure of ANN employed in the proposed system

used at the output neurons to limit the magnitude of all outputs between 0 and 1, i.e. \(\zeta_\theta, \zeta_r, \zeta_q \in [0,1] \). Figure 3.5 describes the detailed structure of the ANN employed in the proposed system. For a given wire \(\omega_k = (\zeta_{\theta k}, \zeta_{r k}, \zeta_{q k}) \) where \(k \in [1,N] \), the corresponding polar coordinates of the way-point and its quality value are given by \(\theta_{w_i} = 2\pi \zeta_{\theta k}, r_{w_i} = r_{\zeta_{r k}}, \) and \(q_{w_i} = q_{\text{init}} + \Delta q \) where \(q_{\text{init}} \) is the initial quality value, \(\Delta q = C \cdot (2\zeta_{q k} - 1) \) and \(C \) is a constant. Note here that the change of a quality value, i.e. \(\Delta q \), may be positive or negative. As a result, the factor \(\zeta_q \) which is the output of a log-sigmoid function and ranges between 0 and 1 is converted into \((2\zeta_q - 1) \in [-1,1] \) so that \(\Delta q \in [-C, C] \). The hidden layer consists of a fixed number of neurons (known as “hidden neurons” [3]), each of which is interconnected with other neurons in the input and output layers. The log-sigmoid functions are employed by the hidden neurons as the activation functions.
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

3.3.2.2 The Wire-Fitting Function

Once the discrete wires are produced, a wire-fitting function defined by a moving least square (MLS) interpolation [52] is found by fitting a continuous curve (or surface) to the wires. In the proposed approach, the wire-fitting interpolator is employed to find a continuous function \(\zeta_q(\sigma_a) \) by using the \(N \) wires produced by the ANN as follows,

\[
\zeta_q(\sigma_a) = \frac{\sum_{k=1}^{N} \zeta_{qk} ||\sigma_a - \sigma_{ak}||^2 + c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon \}^{-1}}{\sum_{k=1}^{N} \frac{N}{k} ||\sigma_a - \sigma_{ak}||^2 + c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon \}^{-1}}
\]

(3.3)

where \(\sigma_a = (\zeta_\theta, \zeta_r), \sigma_{ak} = (\zeta_{\theta k}, \zeta_{rk}), \zeta_{q,\text{max}} = \max_{k \in [1,N]} \{\zeta_{qk}\} \), \(c \) is a small smoothing factor and \(\varepsilon \) is a small positive constant [26, 39].

With a determined function \(\zeta_q(\sigma_a) \), the maximum function value(s) \(\zeta^*_q \) and the corresponding \(\sigma^*_a = (\zeta^*_\theta, \zeta^*_r) \) which achieves \(\zeta^*_q \) can be determined. Thus the optimal action which achieves the highest quality value \(q^*_w = q_{\text{init}} + C \cdot (2\zeta^*_q - 1) \)

is \(a^* = (\theta^*_w, r^*_w) \), where \(\theta^*_w = 2\pi \theta^*_w \) and \(r^*_w = r^*_r \).

3.3.3 Improvement of the ANN and the Q-Curve

The selection of the optimal way-points relies on the q-curve. Thus it is desirable to improve its accuracy. In this section, we describe the details of the training of the ANN and the adjustments of the q-curve by using a practical quality value.

3.3.3.1 Evaluation of the Practical Quality Value

Once an optimal action \(a^* \) (i.e. an optimal way-point) is determined and carried out by the agent at state \(s \), the ferry moves to the selected way-point and the system transits to a new state \(s' \). By taking this action, the agent derives the instant reward/penalty \(r(s, a^*) \) from the environment accordingly. Based on these parameters, a practical quality value denoted by \(Q(s, a^*) \) is evaluated using (3.1).

Note here that, differing from the conventional Q-Leaning algorithms where the quality value is evaluated before the execution of an action, the NQL system calculates \(Q(s, a^*) \) after the optimal action having been carried out. Thus \(r(s, a^*) \)
and $\max \limits_{a'} Q(s', a')$ used in (3.1) are online and actual values. As a result, the evaluated practical quality value represents the actual quality of the selected action a^* at state s, which deserves a higher accuracy than the estimated quality values of the conventional Q-Learning algorithms.

In the evaluation of the practical quality value, the reward function plays an important role as it determines the behavior of the NQL agent in the long term. For our proposed approach, the main considerations in the design of the reward function include the ferry’s traveling distance, the ferry’s waiting time at a way-point, the effective bandwidth, the target sensor’s queue length and the contact between the ferry and the target sensor. Given $s_t = i$ and $a_t = w_j$, the reward function is defined as

$$r(s_t, a_t) = u_j \cdot (d_{ij} + b_j + t_j + q_j) \quad (3.4)$$

where u_j is set to 1 if the ferry services sensor j successfully, or 0 otherwise, d_{ij}, b_j, t_j and q_j are obtained in the following.

1. Traveling Distance Factor: d_{ij}

 When a ferry travels towards a way-point at a constant traveling speed, a long traveling distance causes a long traveling time which results in not only an increase of the delivery delay, but also a large number of data packets being generated and stored at all sensors. For the purpose of reducing the packet delivery delay and the number of buffered packets, the ferry prefers to select the sensor which is located at a relatively short traveling distance to visit. Let $d(w_i, w_j)$ denote the distance between two way-points w_i and w_j, then the traveling distance factor d_{ij} is defined as:

$$d_{ij} = \frac{d_{\text{max}} - d(w_i, w_j)}{d_{\text{max}}} \quad (3.5)$$

where $d_{\text{max}} = \max_{x,y=1,\ldots,m} \{d(x, y)\} + 2r$ is the maximum distance between any two way-points and r is the transmission range of the sensors. (3.5) indicates that a short traveling distance deserves a high reward.

2. Effective Bandwidth Factor: b_j
The effective bandwidth of an underwater acoustic channel is dominated by the distance between the transmission peers. The shorter the distance is, the larger the effective bandwidth is. Apparently, the ferry prefers a larger bandwidth to exchange data packets efficiently. Thus, the effective bandwidth factor b_j is defined as:

$$b_j = \frac{B_{w_j,j}}{B_{\text{max}}}$$ \hspace{1cm} (3.6)

where B_{max} is the maximum bandwidth of the entire spectrum of the underwater acoustic channel and $B_{w_j,j}$ is the effective bandwidth of the acoustic communication channel between the way-point w_j and its host sensor j. $B_{w_j,j}$ is determined according to the distance between w_j and j, as shown in Figure 2.1 and Table 2.1. Note that the position of w_j is determined by the ferry and must be located in the transmission range of sensor j. (3.6) implies that a large bandwidth results in a high reward.

3. Waiting Time Factor: t_j

If the ferry does not meet the desired target sensor, it has to wait at the way-point until the sensor is activated or a maximum waiting time denoted by T_w is reached. The sleep probability of the sensor dominates the length of the waiting time and the meeting probability p_m between the ferry and its target sensor. p_m can be calculated by $p_m = 1 - (p_s)^{t_v + t_w}$ where p_s is the probability that the sensor remains in its sleep state in a unit time (i.e. one second), t_v and t_w are the traversing time and waiting time of the ferry, respectively. Given a pre-specified maximum meeting probability $p_{m,\text{max}}$ between the ferry and the desired sensor, the maximum waiting time is determined as $T_w = \log_{p_s}(1 - p_{m,\text{max}})$. Thus, for a specific sensor j, the waiting time factor t_j is defined as:

$$t_j = \frac{T_w - t_{w_j}}{T_w}$$ \hspace{1cm} (3.7)

where t_{w_j} is the actual waiting time that the ferry spends at the selected way-point w_j. (3.7) indicates that a short waiting time leads to a high reward.
4. Queue Length Factor: q_j

In the proposed system, the generated data packets are stored in each sensor’s local buffer as a first-in-first-out queue with tail-drop. If the buffer of a sensor is full, the incoming packets are dropped at the sensor. To reduce the number of dropped packets, the sensor with a relatively large buffer queue should have a high priority to be serviced by the ferry. Consequently, the queue length factor q_j of sensor j is calculated as follows

$$q_j = \frac{n_j}{q_{\text{max}}}$$ \hspace{1cm} (3.8)

where n_j is the number of data packets collected by the ferry at sensor j and q_{max} is the maximum capacity of the buffer queue. (3.8) indicates that a small buffer queue deserves a low reward.

3.3.3.2 Repositioning Wires with Gradient-Descent Method

After an optimal action a^* is carried out at a given state s, the agent evaluates the practical quality value $Q(s, a^*)$ which is then converted into a $\tilde{\zeta}_q^*$ factor by $\tilde{\zeta}_q^* = (\frac{Q(s,a^*)}{C} - q_{\text{init}} + 1)/2$. Combining with the $\tilde{\zeta}_q^*$ and $\tilde{\zeta}_s^*$ factors corresponding to the optimal action a^*, a practical wire $\tilde{\omega}$ is generated i.e. $\tilde{\omega} = (\tilde{\zeta}_q^*, \tilde{\zeta}_s^*, \tilde{\zeta}_r^*)$. The practical wire is used to reposition the existing N wires by the gradient-descent method [6, 26, 56]. The displacements of the k-th wire are

$$\Delta \zeta_{qk} = \partial \zeta_{qk}(\sigma_a) \partial \sigma_a \Delta q_k,$$

$$\Delta \zeta_{\theta k} = \frac{D(\sigma_a) + \zeta_{\theta k} \cdot N(\sigma_a) - W(\sigma_a) - c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon - N(\sigma_a)}{\partial \sigma_a \partial \sigma_a} \Delta q_k,$$

$$\Delta \zeta_{r k} = \frac{\zeta_{r k} \cdot N(\sigma_a) - W(\sigma_a) - c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon - N(\sigma_a)}{\partial \sigma_a \partial \sigma_a} \Delta q_k,$$

where $\Delta q_k = \tilde{\zeta}_q^* - \zeta_{qk}$. Let $D(\sigma_a) = ||\sigma_a - \sigma_{ak}||^2 + c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon$, $N(\sigma_a) = \sum_{i=1}^{k} \frac{1}{D(\sigma_a)}$ and $W(\sigma_a) = \sum_{i=1}^{k} \frac{\zeta_{ak}}{D(\sigma_a)}$, respectively, the partial derivative terms $\frac{\partial \zeta_{qk}(\sigma_a)}{\partial \sigma_a}$ are given as follows.

$$\left\{\begin{array}{l}
\frac{\partial \zeta_{qk}(\sigma_a)}{\partial \sigma_a} = \frac{D(\sigma_a) + \zeta_{qk} \cdot N(\sigma_a) - W(\sigma_a) - c(\zeta_{q,\text{max}} - \zeta_{qk}) + \varepsilon - N(\sigma_a)}{\partial \sigma_a \partial \sigma_a}
\frac{D^2(\sigma_a) - N^2(\sigma_a)}{\partial \sigma_a \partial \sigma_a}
\frac{\zeta_{qk} \cdot N(\sigma_a) - W(\sigma_a) - 2(\sigma_a - \sigma_{ak})}{\partial \sigma_a \partial \sigma_a}
\frac{D^2(\sigma_a) - N^2(\sigma_a)}{\partial \sigma_a \partial \sigma_a}
\frac{\zeta_{qk} \cdot N(\sigma_a) - W(\sigma_a) - 2(\sigma_a - \sigma_{ak})}{\partial \sigma_a \partial \sigma_a}
\end{array}\right.$$

Consequently, the k-th wire is repositioned to $(\zeta_{\theta k} + \Delta \zeta_{\theta k}, \zeta_{r k} + \Delta \zeta_{r k}, \zeta_{qk} + \Delta \zeta_{qk})$. By repositioning all the N wires and using the same wire-fitting function introduced in section 3.3.2.2, a new continuous q-curve is generated.
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

3.3.3.3 Training ANN with Back Propagation

Besides being used to re-generate the q-curve, the repositioned wires are also employed to train the ANN. The production of the wires depends on the input parameters and the structure of the ANN. Given a fixed structure of the ANN, the objective of training the ANN is to adjust the weights of connections between neurons so that it is capable of producing the wires with high accuracy. In the training process of the ANN, the weight coefficient of each link connecting two neurons can be tuned by the back propagation technique [69]. In our proposed approach, the back propagation technique uses the repositioned wires as the desired output set to generate the deltas of all neurons at the output layer and the hidden layer. The propagated errors are then used to calculate the gradient of the weights which determines how to adjust the weights [69]. A fully trained ANN that reaches its stable state is capable of minimizing the errors between its outputs and the provided samples, i.e. the repositioned wires.

Note here that the generation of a continuous q-curve, i.e. the implementation of the ANN along with the wire-fitting interpolator, need to be in real-time (online), but the improvement of the q-curve, i.e. repositioning the wires and training the ANN, can be carried out offline. Compared with the conventional Q-Learning algorithms in which the online calculation load significantly increases with the increase of the size of the action set, the real-time calculation load of the NQL approach is affordable in the proposed system which has an infinite action set. On the other hand, due to the relatively slow traveling speed, the ferry has sufficient time (e.g. when traveling between two way-points) to carry out the offline calculations for the system improvement which does not affect the performance of the proposed system.

3.4 Simulation

In this section, we apply the proposed Neural-Q-Learning (NQL) based protocol to various network topologies and use simulation results to demonstrate the effectiveness and efficiency of the proposed protocol.
3.4. SIMULATION

3.4.1 Configurations

We consider a randomly generated network consisting of 20 sensors (i.e. \(m = 20 \)) uniformly and sparsely deployed over a 2000\(m \times 2000 \)m square area. The maximum transmission range of the sensors is 50 meters. Each sensor independently generates data packets according to a Poisson process with rate \(g \) packets/second where \(g \in [0.01, 0.05] \). Note that the generating rates may be different between sensors. The size of each generated data packet is 100kB (i.e. 100 \(\times \) 1024 bytes). The maximum size of buffer queue is 500 packets for all the sensors. The traveling speed of the ferry varies from 0.5\(m/s \) to 5\(m/s \) in 0.5\(m/s \) increments. The sleep/active switching rate is set to \(\lambda \) times/second where \(\lambda \in [0.005, 0.07] \). In the NQL implementation, the number of wires and the number of neurons in the hidden layer are set to 10 and 20, respectively. The maximum waiting time in the NQL based protocol is determined by the ferry as described in section 3.3.3.1. The ferry in NQL is capable of determining the optimal position of the way-points within the host sensor’s transmission range which is a two-dimensional and continuous space. The maximum effective bandwidth \(B_{\text{max}} \) of an underwater acoustic communication channel is set to 100kHz. The simulation results are shown in section 3.4.2. Each simulation runs \(5 \times 10^5 \) seconds. Each data point is the average of twenty independent simulations.

3.4.2 Simulation Results

3.4.2.1 Performance of the Neural-Q-Learning Based Protocol

In this section, the performance of the proposed NQL protocol is evaluated in various scenarios. Figure 3.6 shows that the average delivery delay decreases with the increase of the traveling speed of the ferry. This is reasonable since a faster traveling speed of the ferry leads to a shorter traveling time which consequently shortens the delivery delay. Figure 3.7 shows that, when the speed increases, the ferry’s traveling distance averaged on each delivered packet decreases dramatically and converges to a steady-state value quickly. This is because the NQL ferry maintains the number of packets collected/delivered from/to the sensors without traveling a long distance by adaptively extending the waiting time at the way-points to maintain the pre-specified meeting probabilities while a faster trav-
eling speed of the ferry reduces the meeting probability during traversing time. Consequently, the ferry’s traveling distance averaged on each delivered packet remains relatively constant. Additionally, increasing the traveling speed accelerates the learning process of the NQL agent. It can also be observed that a higher $p_{m,\text{max}}$ leads to a faster convergence as well as a lower average traveling distance of the ferry. This is because a low $p_{m,\text{max}}$ leads to a short maximum waiting time and consequently a low meeting probability between the ferry and the sensors, which increases the number of packets that cannot be delivered due to the missed contacts between the ferry and the sensors. These packets have to be carried by the ferry until the next successful contact with the sensors, which results in a significantly long average traveling distance of the ferry. For the same reason, Figure 3.8 shows that the average delivery delay of the NQL protocol decreases when the pre-specified maximum meeting probability $p_{m,\text{max}}$ increases from 0.1 to 1.0 in 0.1 increments. Moreover, Figure 3.9 shows that the ferry’s traveling distance averaged on each delivered packet decreases with the increase of $p_{m,\text{max}}$, which is consistent with Figure 3.7.

3.4.2.2 Performance Comparison with Existing Protocols

In this section, we compare the performance of the proposed NQL protocol with other existing protocols which includes the random-walk based [73], shortest-path based [92] and the conventional Q-Learning algorithm based [95] protocols. The position of way-points in all three benchmarks are fixed at the position of their host sensors. In the shortest path based approach, the ferry determines a shortest traveling path according to the deployment of all static sensors before servicing any sensors and follows the pre-specified shortest route to visit and service the sensors. Once determined, the route remains unchanged until the end of a mission. Whereas, the fixed route does not exist in the random-walk based approach used by the data mules protocol since the ferry randomly determines the next target (i.e. the sensor which the ferry is going to service/visit) after visiting a sensor. The maximum waiting time in both protocols is set to zero, i.e. the ferry doesn’t wait at way-points when the response is not heard from the targeting sensor. In the conventional Q-Learning based protocol, the maximum waiting time is determined as described in section 3.3.3.1. More implementation
3.4. SIMULATION

Figure 3.6: NQL: the average delivery delay versus ferry speed

Figure 3.7: NQL: the ferry’s traveling distance per delivered packet versus ferry speed
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

Figure 3.8: NQL: the average delivery delay versus $p_{m,\text{max}}$

Figure 3.9: NQL: the ferry’s traveling distance per delivered packet versus $p_{m,\text{max}}$
details of the conventional Q-Learning based protocol and its reward function design are described in section 2.

Figure 3.10 compares the average delivery delay of the four protocols versus the traveling speed of the ferry. The pre-specified meeting probability of the conventional Q-Learning and the NQL protocols is set to \(p_{m,max} = 0.9 \). It can be observed that the average delivery delay in the random walk based and the shortest-path based approaches does not decrease significantly with the increase of ferry speed. This is because a fast traveling speed results in a low meeting probability between the ferry and the sensors in the traversing time, and the ferry in both protocols keeps traveling regardless of the decreasing meeting probability. As a result, the packets which are not delivered due to a missed contact between the ferry and the target sensors are carried by the ferry until the next successful contact, which leads to an increasing delivery delay and compromises the benefits brought by the increasing traveling speed of the ferry. However, the ferry in the Q-Learning based and the NQL based protocols adaptively increases the waiting time at the way-points to keep the pre-specified meeting probability with the sensors. The delivery delay of both Q-Learning protocols is thus shortened which outperforms the random-walk based and the shortest-path based protocols. Furthermore, the delivery delay of NQL is shorter than that of the Q-Learning protocol. This is because the way-points in the NQL system are not fixed, and the NQL enables the ferry to explore the optimal position of the way-points which are then used to comprise an optimized route. By delivering packets through the optimal route, the delivery delay is shortened. Additionally, the use of the practical quality value of the selected optimal actions, which improves the accuracy of the produced wires, assists the ferry to determine the optimal position of way-points accurately.

Figure 3.11 compares the ferry’s traveling distance averaged on each delivered packet. It shows that the average traveling distance increases dramatically with the increase of the ferry’s speed in the random-walk based and the shortest path based approaches, but decreases in the Q-Learning based and the NQL based approaches. When the speed is high (3\(m/s \) and above for the Q-Learning based protocol or 2\(m/s \) and above for the NQL based protocol), the ferry in the Q-Learning based and the NQL based protocols travels shorter distances than the
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

shortest-path based protocol to deliver a packet. Compared with the Q-Learning based protocol, the average traveling distance of the ferry in the NQL protocol is shorter. This is consistent with the results shown in Figure 3.10.

In Figure 3.12 where the traveling speed of the ferry is set to 4.5\(m/s\), we compare the average delivery delay of the protocols at various values of \(p_{m_{\text{max}}}\). It can be observed that the delivery delay of the random-walk based and the shortest-path based approaches remains stable. On the other hand, the delivery delay of the Q-Learning based and the NQL based protocols keeps decreasing with the increase of \(p_{m_{\text{max}}}\). This is because the waiting time is fixed to zero for the random-walk based and the shortest path based approaches, but varies inversely with the ferry’s speed for the Q-Learning based and the NQL based approaches. Moreover, the NQL achieves a much shorter delivery delay than the conventional Q-Learning based protocol. Figure 3.13 compares the ferry’s traveling distance averaged on each delivered packet, which is consistent with the results shown in Figure 3.12.

3.5 Conclusion

One main focus of current researches on delay tolerant networks is to increase the meeting probabilities of sensors, which are important for achieving a good throughput, lowering the delivery cost and keeping a short delivery delay. In underwater acoustic wireless sensor networks (UA-WSNs), this problem becomes challenging due to the unique properties of underwater environments.

In this chapter, we proposed a Neural-Q-Learning (NQL) based delay tolerant protocol for UA-WSNs. The proposed protocol enables the ferry to determine the optimal position of way-points in a two-dimensional continuous space, which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferry and sensors. Through simulations, we have demonstrated the feasibility and efficiency of the NQL protocol in UA-WSNs.
3.5. CONCLUSION

Figure 3.10: Delivery delay versus ferry speed

Figure 3.11: Ferry’s traveling distance per delivered packet versus ferry speed
3. A NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER WIRELESS SENSOR NETWORKS

Figure 3.12: Delivery delay versus $p_{m,max}$

Figure 3.13: Ferry’s traveling distance per delivered packet versus $p_{m,max}$
Chapter 4

Multiple Ferries
Neural-Q-Learning Based
Approach for Delay Tolerant
Underwater Acoustic Wireless
Sensor Networks

4.1 Introduction

In recent decades, many existing protocols and schemes have shown the effectiveness of the Q-Learning algorithms in underwater acoustic wireless communications. However, most of these approaches are single agent based. Recent researches [13, 14, 77] have revealed that a robust multi-agent system which enables multiple intelligent agents to jointly solve tasks or to maximize performance through their interactions is capable of allowing a significant increase in system efficiency without requiring a proportional increase of consumed resources (e.g. energy, channel bandwidth, etc.) [48, 74]. As a result, it is necessary to develop a cooperative multi-agent based intelligent method which can effectively and efficiently determine the optimal action in a large, or even continuous, action set at a given system state.
In this chapter, we propose a cooperative multi-agent Neural-Q-Learning (MNQL) \[26, 39, 71\] based delay-tolerant protocol for underwater acoustic wireless sensor networks (UA-WSNs). The proposed MNQL protocol reduces the delivery delay by enabling each ferry (i.e. the intelligent agent) to find an efficient and relatively short traveling route which inter-connects the optimized way-points to deliver data packets between sensors. The optimal position of the way-points which are dynamic in a two-dimensional continuous space is determined by the ferries based on their independent learning from environments. Compared with the conventional Q-Learning algorithms, the MNQL agents avoid searching a large or infinite lookup table. Additionally, the system performance is improved by deploying multiple intelligent agents (i.e. the ferries) and enabling the cooperations between them to achieve desirable outcomes. Each ferry in the proposed cooperative multi-agent system exercises individual choice while achieving an overall effect that benefits not only itself but also the whole system. More specifically, a delay-tolerant underwater acoustic wireless sensor network is modeled as a cooperative MNQL system, in which the NQL algorithm produces a continuous q-curve to replace the discrete q-table used in the conventional Q-Learning algorithms, and the joint action learner (JAL) algorithm \[17\] is employed to establish a cooperative structure among the ferries to coordinate their actions \[47, 93\]. In such multi-agent systems, the inter-agent communication is one of the important requirements for developing the coordination strategy and intelligence decision. But in underwater acoustic communications, the reliable real-time node-to-node communications is impractical due to the communication-deficient environments (e.g. constrained bandwidth of channel, limited communication range and long propagation delay). For maintaining the robust efficiency of multi-agent systems, each intelligent agent in the proposed system incorporates a behavior predictor and a local database to keep track of the up-to-date behavior of other agents.

In the proposed delay tolerant UA-WSN, the network consists of a number of mobile ferries and a number of static sensors. The sensors are assumed to be sparsely-distributed, energy-constrained, stationary, and consequently are not capable of peer to peer sensor communications. Thus a number of ferries are employed to travel around the deployment field to collect, carry and deliver data packets between sensors. A specific position where a ferry contacts with a specific
sensor is known as a way-point. The traveling route of each ferry consists of a number of segments, each of which connects two way-points. The ferries have the freedom to determine the position and the order of the way-points to be visited according to their independent learning. The state of the MNQL system is presented by the collection of the index number of the sensors which are being visited by the ferries at the given time instant. The action of the system is defined as an action vector consisting of the actions of all the ferries, each of which is a specific way-point to be visited by a specific ferry. Simulation results show that the MNQL system improves the system performance by coordinating the agents to explore an optimized traveling route for each of the ferries so as to maximize the meeting probabilities between the ferries and the sensors.

The rest of this chapter is organized as follows. In section 4.2, the multi-agent system and the joint action learner (JAL) algorithm are briefly reviewed. The detailed implementations of the proposed cooperative MNQL system are described in section 4.3. Then, simulation configurations and results are given in section 4.4. Finally, the conclusion is drawn in section 4.5.

4.2 Related Work

In this chapter, the proposed cooperative multi-agent system with a continuous action set employs the Neural-Q-Learning [87] approach to determine the optimal position of way-points in a two-dimensional continuous space. These optimized way-points lead to an efficient traveling route to reduce the delivery delay and delivery cost. In this chapter, the joint action learner (JAL) [17] algorithm is employed to establish the cooperation between ferries. The related works are briefly reviewed as follows.

Many existing schemes and protocols using the NQL algorithm are single-agent based systems [9, 21, 27, 51, 84]. For improving the system performance, it is necessary to extend the algorithm to a cooperative multiple-agent based system. In multi-agent reinforcement learning (MARL) systems, there are multiple intelligent agents deployed in the systems, in which each agent has the freedom to determine actions according to its independent learning from the environment [4]. From the perspective of each individual agent, the actions of other agents
are treated as part of the environment influencing the action determination process of the agent. Therefore, the environment is inherently non-stationary since the other agents are free to change their behaviors as they also learn and adapt [83]. As a result, the actions of other agents must be taken into the consideration by each individual agent due to the mutual influence among the agents. Correspondingly, the updating rule of an individual and independent agent in a typical MARL system is defined as follows,

\[Q(s, \bar{a}) = (1 - \alpha)Q(s, \bar{a}) + \alpha[r(s, a_i) + \gamma V(s')] \]

(4.1)

where \(s \) is the system state, \(\bar{a} \) is the action vector consisting of the action of all the agents, \(Q(s, \bar{a}) \) is the quality value of the action vector \(\bar{a} \) at the state \(s \), \(V(s') \) is the state value of the state \(s' \), \(r(s, a_i) \) is the instant reward that agent \(i \) obtained by taking the action \(a_i \) at the state \(s \), \(\gamma \) is the discount factor and \(\alpha \) is the learning rate.

In recent decades, a number of approaches have been proposed and implemented for MARL systems (e.g. Independent Learner (IL) [17, 82], Joint Action Learner (JAL) [17, 82], Distributed Value Function (DVF) [54, 72], etc.). The proposed approach employs the JAL algorithm, which was first introduced by Claus and Boutilier [17] as a multi-agent extension to the conventional single agent Q-Learning algorithms. Each JAL agent maintains an explicit model of the opponents (i.e. other ferries) at each state to compute the value function \(V(s) \) (i.e. the value of state \(s \)). More specifically, the agent \(i \) assumes that its opponents are stationary, i.e. \(\bar{a} = \{a_i, a_{-i}\} \) where \(a_i \) is agent \(i \)'s current action and \(a_{-i} \) is the collection of the most recent actions of the other agents (i.e. all agents except agent \(i \)). The assumed model of the opponent requires the empirical frequencies of the action taken by an agent. By using this model, the updating rule of agent \(i \) in JAL is as follows [17],

\[Q(s, \{a_i, a_{-i}\}) \leftarrow (1 - \alpha)Q(s, \{a_i, a_{-i}\}) + \alpha(r(s, a_i) + \gamma V(s')) \]

(4.2)

where

\[V(s') = \max_{a_i} \sum_{a_{-i}} \frac{C(s', a_{-i})}{n(s')} Q(s', \{a_i, a_{-i}\}) \]

(4.3)
and $C(s, a_{-i}) = C(s, a_{-i}) + 1$.

4.3 System Description

In this section, we describe the proposed cooperative Multi-agent Neural-Q-Learning (MNQL) algorithm as applied in a distributed delay tolerant UA-WSN which consists of m static sensors and n mobile ferries. Due to the constrained battery power, the transmission range of each sensor is very limited. As a result, the transmission area of any two sensors does not overlap and the sensors cannot communicate with each other for exchanging information. Moreover, for the purpose of conserving energy, each sensor periodically transits between two operational states: the active state (high-power fully functional mode) and the sleep state (low-power partially functional mode). In the active state, the sensor is fully functional and is able to transmit and receive, while in the sleep state the sensor cannot take part in the network activity. Each sensor switches to the active state according to a Poisson process with a rate λ (in times/second). Within a unit of time (i.e. one second), the probability that the sensor switches to the active state for k times is expressed as $p(k) = e^{-\lambda} \lambda^k / k!$. As a result, the probability of that sensor remaining in the sleep state (i.e. $k = 0$) in one second is $p_s = p(k = 0) = e^{-\lambda}$. In either state, each sensor keeps generating data packets at random intervals according to a Poisson process with a rate g packets/second and stores these packets in the local buffer as a first-in-first-out queue with tail-drop. Note here that the generating rates may be different among sensors.

Compared with the sensors, the ferries are much more powerful in terms of energy supply, storage space and computational abilities. Thus, we assume that the storage space of the ferry is infinite. On the other hand, the ferry is equipped with mobility and is capable of continually traveling around the deployment area to collect/deliver data packets from/to sensors. The traveling route of the ferry comprises a set of segments. Each of these segments connects two way-points, each of which is defined as a specific position where the ferry can communicate with a certain sensor. Obviously, a way-point must be within the transmission range of at least one sensor. Since there is no intersection between the transmission areas of any two sensors, each sensor, e.g. sensor i, must have a unique and
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

dedicated way point denoted by \(w_i \). The host sensor of \(w_i \) is denoted by \(h(w_i) \). Given a way-point vector \(\vec{w} = \{w_1, w_2, \cdots\} \), \(h(\vec{w}) = \{h(w_1), h(w_2), \cdots\} \) denotes the collection of the host sensors of the way-points in the vector. Note here that the positions of way-points are dynamic within the transmission range of their host sensors and are determined by the ferry. We also assume that the speed and direction of the ferry does not change when traveling between any two way-points (i.e. the ferry travels along a straight line between two way-points at a constant speed). When traveling into the transmission range of a target sensor (the host sensor of a specific way-point), the ferry broadcasts beacon packets at a constant rate to detect the presence of its target sensor in the surrounding area. All the sensors keep listening to the underwater channel. If the beacon packet is received by the desired sensor, an acknowledgement packet is generated by the sensor and sent to the ferry immediately. After receiving the acknowledgement packet, the ferry looks up its local buffer and transmits (uploads) the data packets targeting to this sensor and collects (downloads) all the data packets from this sensor’s local buffer. The upload and download process is known as a service. The traveling speed of the ferry (0.5 ~ 10m/s [7]) is much slower than the propagation speed of acoustic wave in the underwater environment (1500m/s [85]), thus it is assumed that the ferry doesn’t stop its travel during services. In the proposed approach, each ferry is modeled as an individual and independent intelligent agent which determines not only the optimal visiting targets, but also the optimal position of way-points, based on its independent learning from the environment. Figure 4.1 shows the flow chart of the MNQL algorithm.

4.3.1 The Cooperative Multi-agent Neural-Q-Learning Framework

4.3.1.1 System State Space

In the proposed system, the whole network is considered as a multiple agent Neural-Q-Learning system, in which each ferry acts as an individual and independent agent. The system states are discrete and related to the sensors that the ferries visit. For instance, when the \(k \)th ferry is visiting and servicing sensor \(i \) at time \(t \), the state of ferry \(k \) is defined as \(s_k = i \). The state of all the ferries comprise
4.3. SYSTEM DESCRIPTION

4.3.1.2 Optimal Action and Action Set

In the proposed system, an action of the kth agent is defined as a specific way-point that ferry k targets to visit. For instance, after servicing sensor i at time t (i.e. $s_k = i$), the selected action of ferry k is to travel to the next way-point (e.g. w_j) to service the host sensor $h(w_j)$. Then the action of ferry k is defined as $a_k = w_j$. Note that, since sensor i has been serviced, both ferry k and sensor...
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

i do not have buffered packet to exchange. As a result, sensor i is excluded from the set of sensors to be serviced by ferry k, i.e. $i \notin i^-$ where i^- denotes the set of host sensors that ferry k may visit (i.e. $i^- = \{1, \ldots, i-1, i+1, \ldots, m\}$). Thus the action set of ferry k at time t is defined as $A_k = \bigcup_{x \in i^-} R_x$. In other words, the action set of ferry k is the union of the transmission area of all sensors except sensor i. The next way-point must be $w_j \in \bigcup_{x \in i^-} R_x$, where R_x is the transmission area of sensor x. Furthermore, by using polar coordinates, the position of a way-point w_i relative to its host sensor (e.g. sensor i) can be represented by (θ_{w_i}, r_{w_i}), where θ_{w_i} and r_{w_i} are the angle and distance of the way-point w_i relative to the position of its host sensor i. In other words, an action a of ferry k is interpreted as the polar coordinates of the way-point w_i, i.e. $a_k = (\theta_{w_i}, r_{w_i})$, where $\theta_{w_i} \in [0, 2\pi]$, $r_{w_i} \in [0, r]$ and r is the maximum transmission range of the sensor.

Differing from the single agent reinforcement learning systems, the action of the proposed multi-agent system is an action vector \tilde{a} consisting of the actions of all the agents at the given state, i.e. $\tilde{a} = \{a_1, a_2, \cdots\}$ where a_k denotes the action of agent k. Each single agent aims at determining the optimal position of the way-point that it targets to visit, which achieves the maximum quality value at the current state. At a given system state, e.g. $s = \{s_1, s_2, \cdots, s_n\}$ in which $s_k = i$, the highest quality value that ferry k can achieve is $q_k^* = \max_{j \in i^-} q^*(j) = \max\{q^*(1), \ldots, q^*(i-1), q^*(i+1), \ldots, q^*(m)\}$ where $q^*(j)$ denotes the quality value $Q(s, \{a_k^*(j), a_{-k}\})$, $a_{-k} = \{a_1, \cdots, a_{k-1}, a_{k+1}, \cdots, a_n\}$ and $a_k^*(j) = \arg \max_{a_k \in R_j} Q(s, \{a_k, a_{-k}\})$. Note here that, when evaluating the quality value, an agent assumes the actions of other agents remain stationary, i.e. a_{-k}, which is the action vector consisting of the most recent actions of all the ferries except ferry k, remains unchanged. Correspondingly, ferry k’s optimal action (i.e. the optimal position of the way-point of the target sensor x) is $a_k^* = a_k^*(x) = \arg \max_{a_k \in R_x} Q(s, \{a_k, a_{-k}\})$ where x is the index number of the target sensor selected by ferry k and $x = \arg \max_{j \in i^-} q^*(j)$.

In the example shown in Figure 4.2, two ferries and four sensors are deployed in the field. The system state at time t is $s_t = \{i, j_2\}$ since the ferry 1 and ferry 2 are visiting the way-points w_i and w_{j_2} corresponding to their host sensors i and j_2. The action set is $A_t = A_1 \times A_2$ where $A_1 = \{j_1, j_2, j_3\}$ and $A_2 = \{i, j_1, j_3\}$. If
ferry 1 and ferry 2 determine w_{j1} and w_{j3} as their optimal actions at the current state, respectively, the system action is $\vec{a}_t^* = \{a_1, a_2\}$ where $a_1 = (\theta_{w_{j1}}, r_{w_{j1}})_{j1}$ and $a_2 = (\theta_{w_{j3}}, r_{w_{j3}})_{j3}$. By carrying out the selected action \vec{a}_t^*, the system state transits to $s_t' = \{j_1, j_3\}$.

4.3.2 Generating the Q-Curve

Differing from the conventional Q-Learning algorithms, the proposed MNQL system approximates the optimal action by searching the greatest value(s) of a continuous q-curve which is produced by an ANN along with a wire-fitting interpolator. The ANN is used to generate a fixed number of discrete samples (known as control wires) which are then used in the wire-fitting interpolator to fit a continuous q-curve. The implementation details of these two techniques are depicted in section 3.3.2.
4.3.3 Improvement of the ANN and the Q-Curve

The selection of the optimal way-points relies on the q-curve. Thus it is necessary to keep improving the accuracy of the curve. In this section, we depict the details of the training of the ANN and the adjustments of the q-curve by using a practical quality value.

4.3.3.1 Evaluation of the Practical Quality Value

Once an optimal action a^*_k (i.e. the optimal position of a way-point) is determined and carried out by the agent k at state s, ferry k moves to the selected way-point and the system transits to a new state s'. By taking this action, the agent k derives the instant reward/penalty $r(s, a^*_k)$ from the environment accordingly. The reward function employed by the proposed system is the same as the one given in section 3.3.3.1. Based on these parameters, a practical quality value denoted by $Q(s, \{a^*_k, a_{-k}\})$ is evaluated using (4.2).

In the proposed system, each single ferry’s action could influence the decision and performance of other ferries. For instance, after being serviced by a ferry, the sensor’s buffer queue is emptied. If another ferry visits this sensor at this moment, no data packets can be collected from the sensor, which degrades the performance of that ferry. Although the sensor which was just serviced recently cannot be ruled out from the action set of other ferries, its servicing priority is much lower than those who have relatively more data packets waiting in the buffer queue. Due to the mutual influence among the ferries, the cooperation between them becomes important for the entire system to keep a high efficiency. Differing from the conventional JAL where the value of the next state (i.e. $V(s')$ in equation (4.2)) is estimated before the action is executed, the value of the new state in the proposed cooperative MNQL is a real-time state value which is derived by the agent after reaching the new state s'. More specifically, after a ferry arriving at the selected way-point, the system state transits to s'. The greatest value(s) of the q-curve corresponding to the system state s' is used as the state value $V(s')$. Consequently, the agents in the proposed system do not need to maintain the explicit models of the opponent(s) at each state which are used to calculate the estimated state value in the conventional JAL approaches.
When evaluating a practical quality value, an individual agent must consider other agents’ states and actions. When ferry \(k \) carries out the action \(a_k = w_j \) at a given system state \(s = \{s_1, s_2, \cdots, s_n\} \) in which ferry \(k \)’s state is \(s_k = i \), the system transits to a new state \(s' = \{s'_1, s'_2, \cdots, s'_n\} \). Let \(\vec{a}_k = \{a_k, a_{-k}\} \), then ferry \(k \) evaluates the quality value of the action taken at the state \(s \) as follows.

\[
Q(s, \vec{a}_k) = (1 - \alpha)Q(s, \vec{\alpha}) + \alpha(r(s, a_k) + \gamma V(s'))
\] (4.4)

where \(\vec{\alpha} \) is an action vector consisting of the most recent actions of all the ferries which satisfies \(H(\vec{\alpha}) = H(\vec{a}_k) \) and \(H(\cdot) \) denotes the collection of the host sensors of the actions in the vector \(\cdot \).

4.3.3.2 Agent Behavior Prediction

In the evaluation of the practical quality value of the selected action at the given state, each agent must know the exact action vector consisting of the action of all other ferries. But it is difficult (or costly) to derive such information in the proposed system due to the failure potentialities and limited communication features (such as bandwidth limitations, limited ranges, or unexpected delays) of underwater communication channels. As a result, it is important for each ferry to be able to predict the actions/behaviors of other ferries which are out of the communication range (i.e. when data synchronization between ferries is difficult/impossible). In the proposed system, a behavior predictor is employed to estimate the actions of other agents according to the action/state data stored in a local database [78].

Each ferry maintains a database storing the up-to-date action/state information of other ferries [14, 77]. Each record of the database corresponds to a specific ferry and consists of the set of weighting coefficients of ANN of that ferry, the state/action details (including the coordinates of the selected way-point and index number of both the previous serviced sensor and the next target sensor of that ferry) and the time of the most recent update. When traveling in the deployment field, each ferry (e.g. ferry \(k \)) keeps broadcasting beacon packets consisting of the up-to-date action/state details of itself. These information is used to update the record pertaining to ferry \(k \) in the database of those ferries which receive the
A behavior predictor consists of an ANN and a moving least square interpolator, both of which have the structure as described in section 3.3.2. Moreover, in the proposed system, all the ferries are assumed to be homogeneous, i.e. they employ the identical ANN structure (e.g. the number of layers, the number of neurons in each layer, and the activation functions) and wire-fitting interpolator algorithm. Note here that the weighting coefficients of connections between neurons which depend on the adjustments of individual agents’s training process may be different. When the action and state of another ferry (e.g. ferry \(j \)) is required, ferry \(k \) looks up its local database to check the corresponding record of ferry \(j \). If the record is valid, i.e. the time length since the last update of the record is less than a pre-specified maximum active duration, the action and state data of ferry \(j \) stored in the database can be used in the evaluation directly. Otherwise the database record is outdated, in which case the behavior predictor of ferry \(k \) generates an ANN with the weighting coefficients of ferry \(j \), and feeds in the coordinates of the selected way-point of ferry \(j \)’s target sensor as the input parameters to predict a plausible action of ferry \(j \). The predicted action is then used as the up-to-date information of ferry \(j \) to update the corresponding record in ferry \(k \)’s local database. Once the up-to-date action/state data of all the ferries is derived, the evaluation of the practical quality value is carried out by ferry \(k \).

In the evaluation of the practical quality value, the reward function plays an important role as it determines the behavior of the intelligent agent in the long term. For our proposed approach, the main considerations in the design of the reward function include the ferry’s traveling distance, the ferry’s waiting time at a way-point, the effective bandwidth, the target sensor’s queue length and the contact between the ferry and the target sensor, which are depicted in section 3.3.3.1. In the proposed MNQL system, the practical quality value evaluated based on the real-time reward and real-time value of the next state represents the actual quality of the selected action \(a_k \) at the state \(s \), which deserves a higher accuracy than the estimated quality values of the conventional JAL algorithms.

After an optimal action \(a_k^* \) is carried out by the ferry \(k \) at a given state \(s \), the ferry \(k \) evaluates the practical quality value \(Q(s, \{a_k^*, a_{k-1}\}) \) which is then converted into a \(\tilde{\zeta}_q^* \) factor by \(\tilde{\zeta}_q^* = (Q(s, \{a_k^*, a_{k-1}\}) - q_{init}/C + 1)/2 \). The reposition of wires
with the gradient-descent method and the training of ANN with back propagation are described in section 3.3.3.2 and 3.3.3.3.

4.4 Simulation

In this section, we apply the proposed cooperative Multi-agent Neural-Q-Learning (MNQL) based protocol to various network topologies and use simulation results to demonstrate the effectiveness and efficiency of the proposed protocol. More details are given as follows.

4.4.1 Configurations

We consider a randomly generated network consisting of 20 sensors (i.e. \(m = 20 \)) uniformly and sparsely deployed over a \(2000m \times 2000m \) square area. The maximum transmission range of the sensors is 50 meters. Each sensor independently generates data packets according to a Poisson process with rate \(g \) packets/second where \(g \in [0.01, 0.05] \). Note that the generating rates may be different between sensors. The size of each generated data packet is 100kB (i.e. \(100 \times 1024 \) bytes). The maximum size of buffer queue is 500 packets for all the sensors. The traveling speed of the ferry, denoted by \(v \), varies from 1m/s to 10m/s in 1m/s increments. The sleep/active switching rate is set to \(\lambda \) times/second where \(\lambda \in [0.005, 0.07] \). In the MNQL implementation, the discount factor \(\gamma = 0.5 \), the learning rate \(\alpha_t = \frac{1}{t} \), \(t = 1, 2, \ldots \), the number of wires and the number of neurons in the hidden layer of ANN are set to 10 and 20, respectively. The ferries in MNQL are capable of determining the optimal position of the way-points within their host sensor’s transmission range which is a two-dimensional continuous space. Considering the size of the deployment field and the number of employed AUVs, the probability of crash is small in the proposed system [88]. For the purpose of eliminating potential crashes between the ferries, each ferry is programmed to travel at a constant and dedicated depth above the deployment field. The maximum active duration of database records is pre-specified as \(\frac{d_{\text{max}}}{v} \) where \(d_{\text{max}} \) is the maximum distance between any two sensors. The maximum effective bandwidth \(B_{\text{max}} \) of an underwater acoustic communication channel is set to 100kHz.
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

The simulation results are shown in section 4.4.2. Each simulation runs 5×10^5 seconds. Each data point is the average of twenty independent simulations.

4.4.2 Simulation Results

4.4.2.1 Performance of the MNQL Protocol

In this section, the performance of the proposed MNQL protocol is evaluated in various scenarios. The maximum waiting time in the MNQL protocol is determined by the ferries as described in section 3.3.3.1. The number of ferries is set to 2, 3 and 5, respectively (i.e. $n = 2, 3, 5$). In Figure 4.3 where the traveling speed of the ferries is fixed at 10m/s, the total number of delivered packets increases when the pre-specified max meeting probability $p_{m,\text{max}}$ increases from 0.1 to 1 with 0.1 increments. This is because a low $p_{m,\text{max}}$ leads to a short maximum waiting time and consequently a low meeting probability between the ferries and the sensors, which increases the number of packets that cannot be delivered due to the missed contacts between the ferries and the sensors. These packets have to be carried by the ferries until the next successful contacts with the sensors, which result in not only a low number of delivered packets but also a significantly long delivery delay and a long average traveling distance of the ferries, as shown in Figure 4.4 and Figure 4.5. It can also be observed that, when there are more ferries deployed, the total number of delivered packets increases. This is reasonable since more ferries lead to a higher frequency of the sensors being visited which consequently result in more collected and delivered packets. For the same reason, the average delivery delay and the average traveling distance of the ferries decrease, as shown in Figure 4.4 and Figure 4.5.

Figure 4.6 shows that the total number of delivered packets increases with the increase of the traveling speed of the ferries since a faster speed of the ferries not only increases the frequency of the sensors being visited but also accelerates the learning process of the MNQL agents. Figure 4.7 shows that the average delivery delay decreases with the increase of the traveling speed of the ferries since a faster traveling speed of the ferry leads to a shorter traveling time which consequently shortens the delivery delay. In Figure 4.8, when the speed increases, the ferries’ traveling distance averaged on each delivered packet decreases dramatically and
Figure 4.3: total delivered packets versus $p_{m,\text{max}}$

Figure 4.4: delivery delay versus $p_{m,\text{max}}$
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

Figure 4.5: Ferry’s traveling distance per delivered packet versus $p_{m,\text{max}}$

Figure 4.6: total delivered packets versus speed
4.4. SIMULATION

converges to a steady-state value quickly. Additionally, deploying more ferries is capable of increasing the number of delivered packets and lowering both the delivery delay and the ferries’ average traveling distance.

4.4.2.2 Performance Comparison with Existing Protocols

In this section, we compare the performance of the proposed MNQL protocol with other existing protocols which include the random-walk (RW) [73] based, shortest-path (SP) [92] based, the conventional Q-Learning (QL) algorithm [95] based and the Neural-Q-Learning (NQL) [96] based protocols. The number of employed ferries is set to 5 in all these protocols. Note that the multiple ferries in the four benchmarks do not have cooperative relationship between each other, i.e. each ferry determines the next visiting target individually and independently without considering other ferries. The position of way-points are fixed at the position of their host sensors in the RW, SP and QL protocols, but are dynamic within the transmission range of their host sensors in the NQL and MNQL approaches. In the shortest path based approach, the ferry determines a shortest traveling path according to the deployment of all static sensors before servicing any sensors and follows the pre-specified shortest route to visit and service the sensors. Once determined, the route remains unchanged until the end of a mission. Whereas, the fixed route does not exist in the random-walk based approach used by the data mules protocol since the ferry randomly determines the next target (i.e. the sensor which the ferry is going to service/visit) after visiting a sensor. The maximum waiting time in both RW and SP protocols is set to zero, i.e. the ferry doesn’t wait at way-points when the response is not heard from the targeting sensor. In the QL, NQL and MNQL protocols, the maximum waiting time is determined by the ferries as described in section 3.3.3.1. More implementation details of the conventional Q-Learning based protocol and its reward function design are described in chapter 2. The details of the NQL protocol is depicted in chapter 3.

In Figure 4.9 where the traveling speed of the ferries is set to 10m/s, we compare the number of total delivered packets of all five protocols at various values of the pre-specified maximum meeting probability \(p_{m,max} \). It can be observed that, with the increases of \(p_{m,max} \) from 0.1 to 1.0 with 0.1 increments, the number of
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

Figure 4.7: delivery delay versus speed

Figure 4.8: Ferry’s traveling distance per delivered packet versus speed
4.4. SIMULATION

delivered packets significantly increases in the MNQL protocol, but just slightly increases in the Q-Learning and Neural-Q-Learning approaches. This is because the MNQL protocol improves the system efficiency by coordinating the action of the ferries to avoid servicing a sensor with multiple ferries, which cannot be achieved by the QL and NQL protocols due to the lack of the cooperative framework among the ferries. In the random-walk based and the shortest-path based approaches, the total delivered packets remains stable since the ferries in both protocols keep traveling regardless of the varying meeting probabilities.

It can be observed in Figure 4.10 that the average delivery delay of the random-walk based and the shortest-path based approaches remains stable, while the delivery delay of the QL, NQL and MNQL based protocols keeps decreasing with the increase of $p_{m,max}$. This is because the waiting time is fixed to zero for the random-walk based and the shortest path based approaches, but varies inversely with the ferries’ speed for the QL, NQL and MNQL based approaches. Moreover, the MNQL achieves a much shorter delivery delay than the QL and NQL based protocols. Figure 4.11 compares the ferries’ traveling distance averaged on each delivered packet, which is consistent with the results shown in Figure 4.10.

In Figure 4.12 where the pre-specified maximum meeting probability $p_{m,max}$ is set to 0.9, the total number of delivered packets in all five protocols increases with the increase of the traveling speed of the ferries since a faster traveling speed leads to a shorter traveling time which consequently increases the delivered packets. The ferries in MNQL deliver less packets than those in the QL and NQL protocols before the speed reaches 3m/s. After this point, the total number of the delivered packets in MNQL is greater than that in the QL and NQL protocols. This is because a slow traveling speed leads to a long traveling period which causes the expiration of a relatively large number of records in the local database of MNQL agents. When the practical quality values are evaluated, the agents have to estimate the action and state for those expired records with the behavior predictor, which increases not only the online calculation load but also the probability of errors. The practical quality values evaluated based on the inaccurately estimated actions result in more errors in the wire repositioning and ANN training which produce inaccurate q-curves. As a result, the total number
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

Figure 4.9: total delivered packets versus $p_{m,max}$

Figure 4.10: delivery delay versus $p_{m,max}$
of the delivered packets of MNQL at a slow traveling speed is less than that of the QL and NQL protocols. But, a faster speed of the ferries increases the number of data update communications between ferries which will reduce the number of expired records and the errors caused by the behavior predictor, and thereby improve the accuracy of the evaluated practical quality values and the produced q-curves. Furthermore, a faster speed of the ferries causes faster transitions between system states which leads to significant dynamic of the system. Since the agents in the benchmark protocols assume the environment to be stationary, the dynamic system greatly degrades their performance. The simulation results show that the ferries in the MNQL protocol quickly adapt to the dynamic environment and outperforms other approaches when the traveling speed is high (i.e. > 5 m/s as shown in Figure 4.12).

Figure 4.13 compares the average delivery delay of the five protocols versus the traveling speed of the ferries. It can be observed that the average delivery delay in all approaches decrease with the increase of the traveling speed of the ferries. This is reasonable since a faster traveling speed of the ferries leads to a shorter traveling time which consequently shortens the delivery delay. The ferries in the QL, NQL and MNQL based protocols decrease the delivery delay by adaptively increasing the waiting time at the way-points to keep the pre-specified meeting probability with the sensors. And the delivery delay of MNQL is significantly shorter than that of the QL and NQL protocols since the coordinations among the ferries adapt the system to the dynamic environment.

Figure 4.14 compares the ferries’ traveling distance averaged on each delivered packet. It shows that the average traveling distance increases dramatically with the increase of the traveling speed in all approaches except the MNQL protocol where the average traveling distance converges to a steady-state value quickly. This is because, when there are multiple agents deployed in the system, the environment is inherently non-stationary from the perspective of each individual agent. The agents in the QL and NQL protocols fail to determine an optimal position of way-points due to the frequent transitions of system states caused by the fast traveling speed of the ferries. But the agents in MNQL are capable of improving its performance by coordinating their actions. As a result, the average traveling distance of the ferries in MNQL decreases and quickly converges in such
4. MULTIPLE FERRIES NEURAL-Q-LEARNING BASED APPROACH FOR DELAY TOLERANT UNDERWATER ACOUSTIC WIRELESS SENSOR NETWORKS

Figure 4.11: Ferry’s traveling distance per delivered packet versus $p_{m,max}$

Figure 4.12: total delivered packets versus speed
4.5 Conclusion

This chapter has proposed a cooperative Multi-agent Neural-Q-Learning (MNQL) based delay tolerant protocol for UA-WSNs. The proposed protocol enables each ferry to determine the optimal position of way-points in a two-dimensional continuous space, which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferries and sensors. The proposed system achieves a robust performance by employing the Joint Action Learner algorithm to coordinate the actions of the multiple ferries. Through simulations, we have demonstrated the feasibility and efficiency of the NQL protocol in UA-WSNs.
Figure 4.13: delivery delay versus speed

Figure 4.14: Ferry’s traveling distance per delivered packet versus speed
Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, a family of reinforcement learning algorithm based delay tolerant protocols designed for fully-distributed underwater acoustic wireless sensor networks (UA-WSNs) are presented. The proposed protocols explicitly employ the unique features of underwater acoustic communication channels in their reward function designs to assist each ferry node to determine the optimal visiting targets and the optimal position of way-points. Some important issues of the proposed self-adaptive protocols, e.g. the design of reward function, the selection of the pre-specified maximum meeting probability, the impact of various traveling speed of the ferries etc., have been presented and analyzed in detail.

The delay-tolerant system developed in chapter 2 models an underwater acoustic wireless sensor networks (UA-WSNs) as a single agent reinforcement learning system in which the position of way-points are fixed at the position of their host sensors. The ferry is assigned to be the system agent which has the freedom to select the way-point to be visited. The protocol reduces the delivery delay and delivery cost by including three factors, namely, the traveling distance factor, the waiting time factor and the queue length factor, in the reward function design. The introduced factors enable the ferry to adaptively prolong the waiting time at way-points to increase the meeting probabilities with sensors. By using the proposed protocol, the ferry node is capable of learning from the environment and then adaptively adjusting the relevant parameters of the networks.
5. CONCLUSIONS AND FUTURE WORK

The system performance is improved by the protocol presented in chapter 3. In the proposed system, the ferry has the freedom to determine not only the order of the way-points it visits, but also their positions which are enabled to be dynamic within the transmission range of their host sensors. The conventional reinforcement learning algorithms are not capable of handling such a situation since the action set of the system is continuous which leads to an infinite look-up table. As a result, we employ the artificial neural network (ANN) based Neural-Q-Learning algorithm (NQL) in the system. The ferry in the NQL system determines its actions by producing a continuous q-curve, which describes the relationship between system action and the corresponding quality value at a given system state, to replace the lookup table used in the conventional Q-Learning algorithms. Once an optimal action is determined and carried out, the ferry evaluates a practical quality value which is used not only by the wire-fitting interpolator to re-generate the q-curve, but also to train the ANN to improve the accuracy of the produced q-curves. The results show that the use of the artificial neural network based reinforcement learning protocol manifests far better performance than the conventional reinforcement learning protocol in the underwater environments by enabling the ferry to determine the optimal position of way-points in a two-dimensional continuous space, which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferry and sensors.

Finally, a multi-agent reinforcement learning (MARL) based scheme (named MNQL protocol) is proposed in chapter 4. The MNQL protocol employs the joint action learner algorithm (JAL) to coordinate the actions of multiple ferries. In the cooperative MNQL system, each ferry which is modeled as an individual and independent intelligent agent of the system treats the actions of other ferries as part of the environment which is no longer stationary from the perspective of each individual agent. Furthermore, each ferry maintains a local database to store the most recent action and state of other ferries which are used by a behavior predictor to estimate the possible action and state of other ferries when direct communications are infeasible. Compared with the single agent based reinforcement learning protocols, the system performance is robust due to the cooperative actions among the ferries.
5.2 Future Work

By carrying out a number of extensive simulations, we analyzed the performance of the proposed protocols in underwater acoustic wireless sensor networks with various topologies. Compared with the existing UA-WSN protocols, the proposed reinforcement learning based delay tolerant protocols enable each ferry to determine the optimal way-points which comprise an efficient traveling route to reduce the delivery delay and delivery cost while maximizing the meeting probabilities between the ferry and sensors. The employments of the artificial neural network algorithm and the multi-agent reinforcement learning algorithm improve the system even further.

5.2 Future Work

There are many possibilities for extending this dissertation work. In this dissertation, the applications of the reinforcement learning based delay tolerant protocols were considered for an ideal underwater acoustic communication channel. However, if the channel is not ideal, it is desirable to investigate the potential impact of the bit error rate of the communication channel on the performance of the proposed system. Additionally, the design of the reward function in reinforcement learning algorithms may be improved by introducing a weight coefficient for each of the factors employed so that their importance can be individually adjusted. Finally, it is possible to analyze more detailed delay-tolerant MAC layer protocols/schemes (e.g. the adaptive propagation-delay-tolerant collision-avoidance protocol (APCAP) [30], the Propagation Delay Tolerant (PDT-)ALOHA [1], or the UWAN-MAC [63]) tailored to particular UA-WSN systems in order to improve the performance and maximize the reliability of the proposed systems.
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

