Habitat characteristics of the rare underground orchid
Rhizanthella gardneri

Published in:
Australian Journal of Botany

DOI:
10.1071/BT08031

Link to publication in the UWA Research Repository

Rights statement
Post print of work supplied. Link to Publisher’s website supplied in Alternative Location.

General rights
Copyright owners retain the copyright for their material stored in the UWA Research Repository. The University grants no end-user rights beyond those which are provided by the Australian Copyright Act 1968. Users may make use of the material in the Repository providing due attribution is given and the use is in accordance with the Copyright Act 1968.

Take down policy
If you believe this document infringes copyright, raise a complaint by contacting repository-lib@uwa.edu.au. The document will be immediately withdrawn from public access while the complaint is being investigated.
Habitat characteristics of the rare underground orchid, *Rhizanthella gardneri*

Jeremy BougoureA,C, Mark BrundrettA, Andrew BrownB and Pauline F. GriersonA

\AEcosystems Research Group, School of Plant Biology M090, University of Western Australia, Crawley, WA 6009, Australia.

BDepartment of Environment and Conservation, Kensington, WA. 6151, Australia.

CCorresponding author. Email: bougoj01@student.uwa.edu.au

Abstract

Rhizanthella gardneri R. S. Rogers is an entirely subterranean mycoheterotrophic orchid only known from two isolated populations within south-west Western Australia. This rare species appears restricted to habitats dominated by species of the *Melaleuca uncinata* complex. *Rhizanthella gardneri* purportedly forms a tripartite relationship with *Melaleuca**, via a connecting mycorrhizal fungus, for the purpose of carbohydrate and nutrient acquisition. Here, we quantify key climate, soil and vegetation characteristics of known *R. gardneri* habitats to provide baseline data for monitoring of known *R. gardneri* populations, better understand how *R. gardneri* interacts with its habitat, and to identify possible new sites for *R. gardneri* introduction. We found that the habitats of the two known *R. gardneri* populations show considerable differences in soil chemistry, *Melaleuca* structure and *Melaleuca*

*‘Melaleuca’ in this paper refers to the various species of the *Melaleuca uncinata* complex that *Rhizanthella gardneri* is known to associate with.
productivity. Multivariate analyses showed that both MDS and PCA ordinations of soil chemical characteristics were very similar. Individual sites within populations were relatively similar in all attributes measured while overall Northern and Southern habitats were distinct from each other. These results suggest that *R. gardneri* can tolerate a range of conditions and may be more widespread than previously thought, given that there are extensive areas of *Melaleuca* thickets with similar habitat characteristics across south-western Western Australia. Variability within the habitats of known *R. gardneri* populations suggests translocation of this species into sites with similar vegetation may be a viable option for the survival of this species.

Introduction

Many orchid species are on the brink of extinction and as such intervention via conservation of existing populations, identification of habitat suitable for their reintroduction and restoration of degraded habitat are paramount to their continued survival (Hágsater and Dumont 1996). Restoration and conservation of individual species, particularly threatened species, is generally complex and requires a thorough understanding of the biological systems and processes associated with both their continued existence and reasons for decline (Montalvo *et al.* 1997). While conservation of existing populations and habitat is of primary importance, there is also an increasing need for ecological restoration and/or translocation of individuals produced *ex situ* to ensure survival and proliferation of endangered species and systems (Young 2000). However, habitat characteristics for many rare or threatened plants are often poorly characterised, particularly in terms of fundamental ecosystem properties such as productivity, soil chemistry, and nutrient cycling.
Rhizanthella gardneri R.S.Rogers (western underground orchid) is a critically endangered orchid that is entirely subterranean and mycoheterotrophic, meaning that it has no ability to photosynthesise and limited capacity to independently access soil nutrient pools (Dixon and Pate 1990). Rhizanthella gardneri and the only other member of the genus, R. slateri (Rupp) M.A.Clem. & P.J.Cribb (eastern underground orchid), are unusual plants in that they remain subterranean during flowering (Fig. 1a) – a unique trait even amongst mycoheterotrophic species (Leake 1994). It is thought that R. gardneri is linked, via a mycorrhizal fungus (Thanatephorus gardneri Warcup), to an autotrophic shrub (Melaleuca), to form a tripartite relationship of nutrient and carbohydrate exchange (Warcup 1985, 1991; Dixon and Pate 1990). If R. gardneri is indirectly dependent upon the surrounding shrubs for carbon and nutrients then we need an increased understanding of the range in productivity and nutrient availability of known habitat in order to restore, create or identify new habitat.

Habitat considerations are paramount to understanding how to best conserve and restore populations of rare plant species (Fielder et al. 2007), including mycoheterotrophic species (Leake, 1994). Habitat is the range of environments or communities over which a species occurs and comprises an abstract formulation of this range in terms of environmental variables and the species’ limits in relation to them (Whittaker et al. 1973). Understanding a species’ limits of tolerance and responses to these environmental variables is paramount to understanding how species function and in predicting how they may behave in a changing environment. In the case of R. gardneri, habitat dependence and interactions within their habitat are mostly unknown, but like most plant species, dependent variables are diverse, with
nutrition, climate and biotic interactions probably most important. While there are comprehensive climate records for all known *R. gardneri* sites, the nutritional status and productivity of *R. gardneri* habitats, i.e., the capacity of the habitat to maintain nutrient and carbon supply under field conditions, remains unknown.

The need for restoration of *R. gardneri* populations and surrounding habitat has become increasingly apparent. Monitoring over the past 26 years has identified a suite of intensifying threats to the survival and proliferation of *R. gardneri* including; small population sizes, changes in rainfall distribution (Australian Bureau of Meteorology 2008), limited capability for recruitment due to habitat fragmentation, isolated habitats in excessively cleared landscapes, possible encroachment by salinisation, increased weed species competition, unsuitable fire management and herbicide aerial spray drift (Brown *et al.* 1998). Populations of *R. gardneri* have purportedly been in decline since monitoring began in 1979, with anecdotal evidence suggesting that decreased sightings of *R. gardneri* are correlated to a decline in health of the associated *Melaleuca* habitat. Declining *Melaleuca* ‘health’ has been associated with casual observations of a reduced litter layer, diminishing ground cover of other species, decreased density of thickets, limited recruitment and the yellowing of foliage. However, there have been no quantitative or qualitative measurements of either the structure or nutritional status of known *R. gardneri* habitats, or to what extent habitat that is deemed healthy differs from that in decline. Consequently, we assessed vegetation structure, productivity and soil nutrients of known *R. gardneri* habitats. We sought to determine key similarities and differences among habitats to help define prerequisites and limitations to the survival of *R. gardneri* and to identify new *R. gardneri* populations and potential sites for *R. gardneri* introduction.
Materials and methods

Study sites

Field sites analysed in this study represent habitat of all known live *R. gardneri* individuals during 2007. *Rhizanthella gardneri* has been found in only two areas of south-west Western Australia; three sites within 30 km of Corrigin in the northern wheatbelt (Northern Population) and three sites approximately 80 km east of Ravensthorpe in the south-eastern wheatbelt (Southern Population) (Fig. 1c). The Northern and Southern populations are 300 km apart with many areas of apparently similar habitat between these sites; however, there are no records of *R. gardneri* from these intervening areas. The six sites where *R. gardneri* is known to occur are between one and eight hectares in area and are generally within vegetation remnants directly adjacent to agricultural land. Two sites are located on private property (Dallinup Creek North and South); two sites are in protected Nature Reserves (Babakin and Sorenson’s Reserve); and two sites are located on Unallocated Crown Land (Oldfield River and Kunjin). None of the sites have been directly affected by fire in the past 30 years. However, similar surrounding vegetation that has been burnt in the past 30 years has rapidly and successfully regenerated.

Both the Northern and Southern sites are subject to a Mediterranean type climate (wet, cool winters with hot, dry summers) as experienced by most of south-west Western Australia. The Northern sites receive ~320-350 mm annual rainfall compared to ~400-450 mm for the Southern sites. However, annual rainfall is quite variable and it is not uncommon for any of the sites to receive > 150 mm of rain during typically
dry summer months (Australian Bureau of Meteorology 2008). Seasonal temperature
fluctuations at Northern sites range from 5-15 °C in winter and 15-32 °C in summer. Climate
conditions for the Southern sites are slightly milder with average winter temperatures as low as
7-16 °C during winter and 14-28 °C during summer (Australian Bureau of Meteorology 2008).

The Northern populations of *R. gardneri* occur in dense *Melaleuca scalena* Craven &
Lepschi thickets (Fig. 2b) whereas the Southern populations occur in thickets of *M. hamata*
Fielding & Gardner, *M. uncinata* R.Br. and/or a third apparently undescribed species of the
M. uncinata complex (Craven *et al.* 2004). All of the above *Melaleuca* species are taxonomically similar and belong to the *M. uncinata* complex, a group of species widely distributed throughout southern Australia (Craven *et al.* 2004; Broadhurst *et al.* 2004). The six sites, encompassing both Northern and Southern populations, although primarily thickets of *Melaleuca*, also include more open areas dominated by smaller *Dryandra* spp., large exposed rocks, areas of grasses and sedges, *Allocasuarina campestris* (Diels) L. A. S. Johnson thickets or occasional larger *Banksia media* R.Br. and/or mallee eucalypts. However, it appears that the occurrence of *R. gardneri* plants is specific to the *Melaleuca* dominated patches within each site.

Soils at all six sites are generally white-grey sandy loam over a shallow heavy orange-
grey clay layer. The clay layer at the Dallinup Creek north and south sites (Southern
sites) is within a few centimetres of the surface and is hard-setting, so that water often
pools on the soil surface for a substantial time after heavy rainfall. However, these
sites are on slight slopes, which allows for some degree of drainage. Soils at Northern
sites are considerably sandier than the loamy soils at Southern sites, although they
often form hard surface crusts during prolonged dry spells, especially during summer.
A summary of the general site characteristics of the Northern and Southern
populations of *R. gardneri*, including historical information, is given in Table 1.

Aboveground structure and productivity of Melaleuca thickets

Three replicate plots of 10 m x 10 m were established within *Melaleuca* thickets at
each of the six sites. Shrub density, canopy cover, stem number and height were
measured for ten *Melaleuca* shrubs within each 10 m x 10 m plot. The biomass of
Melaleuca at each site was estimated by destructively sampling five individuals,
representative of the range of canopy areas, and measuring their above ground
biomass. Individual plants were separated into foliage and stem components, weighed
and a sub-sample of foliage measured for total leaf area using a Li-3100 Area Meter
(Li-Cor Inc, Nebraska). The sub-sample of leaves was then oven dried at 70 °C for 48
hours, and specific leaf area (m² kg⁻¹) was calculated for each shrub. Leaf area per
shrub was calculated as specific leaf area x total dry leaf mass.

Standing leaf litter was measured by collecting all litter within 50 cm x 50 cm squares
at 0, 50 and 100 cm distance from randomly selected *Melaleuca* shrubs from within
each of the three plots at each site. Litter was sorted into principal (*Melaleuca*)
components (leaves, fruits, twigs) and those of other species (leaves and fruit) before
being oven dried at 60 °C for 48 hours and then weighed.

Melaleuca root and living fungal biomass in Melaleuca thickets

Root biomass (< 2 mm diameter) was estimated from cores collected in June 2005 to
coincide with *R. gardneri* flowering and when soil moisture was consistently greatest.

Duplicate soil cores (7.5 cm diameter) were sampled 10, 25, 50 and 100 cm in a south westerly direction from three randomly selected *Melaleuca* shrubs from each of the three plots at each of the six sites. Cores were bulked by position within each plot after separating into 0-5 cm and 5-15 cm depths for measurement of root biomass. Leaf litter depth (mm) was also recorded at all sampling points. Roots were separated from soil by sieving samples (< 1 mm) under running water, and hand-sorting roots.

Root samples were then oven dried at 60 °C for 48 hours and all roots < 2 mm diameter were weighed. The gravimetric moisture content of sampled soils was calculated after drying for 24 hours at 110 °C.

Living fungal biomass from a subsample of each of the 0-5 cm soil cores mentioned above was estimated from ergosterol concentrations (Seitz *et al.* 1977). Duplicate samples of 5-6 g of field moist soils were weighed out. One duplicate of soil was amended with 100 µg ergosterol in 1 mL n-hexane-propan-2-ol (98:2 v/v) to determine extraction and recovery efficiency. Ergosterol was then extracted and quantified by reverse phase HPLC using the method described by Ruzicka *et al.* (1995) as modified by Grierson and Adams (2000). Ergosterol recovery of ‘spiked’ samples (used to assess ergosterol extraction efficiency) was always greater than 75 %.

Soil chemistry analysis

Three samples from each of the three plots at each site were collected using 7.5 cm diameter metal corers, separated into 0-2, 2-5, 5-10 and 10-20 cm depths, and bulked by plot and depth prior to sieving (< 2 mm). Soils were then assayed for a range of
chemical attributes. The pH of 5 g fresh soil was measured after vigorously mixing
samples with deionised water (1:1) (Thomas 1996). Labile phosphorus was measured
using two techniques. First, labile inorganic P (Bray P$_i$) was measured according to
the method of Bray and Kurtz (1945). Briefly, air dry soil was mixed with an
extraction solution (0.03 N NH$_4$F and 0.1 N HCl), shaken for 45 seconds and filtered
immediately. Second, labile organic and inorganic hydroxide-extractable P fractions
were measured using the method described by Grierson and Adams (2000). Briefly,
10 g of soil in 50 mL of 0.1 M NaOH solutions were shaken for 16 hours after which
extractions were centrifuged and the supernatant removed via filtration. One aliquot
(OH-P$_i$) of the filtered supernatant was acidified with HCl, to precipitate organic
matter, and re-filtered. A second aliquot (OH-P$_o$) of the filtered supernatant was
digested (H$_2$SO$_4$/H$_2$O$_2$). Phosphorus in all extracts was measured using a modified
ascorbic acid method of Kuo (1996). Organic P (OH-P$_o$) was estimated as the
difference in P between OH-P$_i$ and OH-P$_o$.

Labile inorganic nitrogen was extracted according to the method described by
Rayment and Higginson (1992). Briefly, 5.0 g fresh soil in 50 mL of 1M KCl was
shaken for 1 h and filtered before supernatant NH$_4^+$-N and NO$_3^-$-N concentrations
were determined by automated colorimetric techniques performed on a Technicon
Auto Analyser II (Technicon 1977).

Soil and litter samples were analysed for total N and C content (%), and δ^{15}N and
δ^{13}C isotope signatures, using an Automated Nitrogen Carbon Analyser-Mass
Spectrometer consisting of a Roboprep connected with a Tracermass isotope ratio
spectrometer (Europa Scientific Ltd., Crewe, UK) in the West Australian
Biogeochemistry Centre at the University of Western Australia. All samples were standardised against a secondary reference of Radish collegate (3.167 % N, δ^{15}N 5.71; 41.51 % C, δ^{13}C -28.61) that was in turn standardised against primary analytical standards (IAEA, Vienna). Accuracy was measured at 0.07 %, while precision was measured at 0.03 %, according to the stipulations for reporting analytical error in stable isotope analysis outlined by Jardine and Cunjak (2005).

Data analysis

The best models for predicting component biomass of *Melaleuca* based on canopy area as the independent variable were determined after testing a number of different allometric models. The allometric models that best fitted the data were chosen by examining residual distributions and maximum adjusted r^2. The behaviour of the models for small diameter and "out of sampled range" trees were also carefully examined. The models tested were: $y = a + bx$ and $y = a + bx + cx^2$; where x is total canopy area (m^2), y is the mass of different components of sample shrubs, a, b and c are constants.

Analysis of variance (ANOVA) was used to suggest site differences among *Melaleuca* individual and thicket structure, biomass (*Melaleuca* aboveground, *Melaleuca* fine roots (< 2mm), leaf litter and fungus) and soil nutrient measures among sites. In all cases, data were first checked for normality and square root or log transformed where necessary to improve homogeneity of variances. For analyses where samples were divided into depths (soil analyses) or distance from *Melaleuca* stems (standing litter biomass, root biomass, ergosterol concentrations), two-way ANOVA was used to determine if there was significant interaction between the two
independent variables. Significance level for all analyses was $P \leq 0.05$ and Statview 5.0 software (SAS Institute 1996) was used for all statistical analyses.

Multivariate analyses were used to investigate overall similarities and differences among sites. Similarity of the soil characteristics of Northern and Southern sites was calculated using principal components analysis and non-metric multidimensional scaling ordinations (Primer software version 6.2, Primer-E Ltd, Clarke and Gorley 2006). Analysis of similarity (ANOSIM) was performed to determine if samples within groups were more similar than between groups. Similarity percentages (SIMPER) analysis was used to determine contribution of individual variables to dissimilarity of groups. Data were normalised prior to analysis and Euclidean distance was used to generate the resemblance matrix for data (Clarke and Gorley 2006).

Results

Aboveground structure and productivity of Melaleuca thickets

Melaleuca shrub densities at all sites were > 3360 individuals per hectare with little or no evidence of recent *Melaleuca* recruitment. Heights of *Melaleuca* were generally uniform within sites (~2.5 m), but were in general around 0.25 m taller at the Northern sites compared to the Southern sites ($P = 0.0006$; Table 2). Projected canopy areas of individual *Melaleuca* shrubs ranged from 0.25 to 6.8 m2. Total canopy area of sites ranged from 3875 m2 ha$^{-1}$ at Sorenson’s Reserve to 10,011 m2 ha$^{-1}$ at Dallinup Creek South. However, these values are likely to be somewhat greater than total cover at plot scale as individual *Melaleuca* canopies overlapped in many instances (Table 2).
Canopy area of individual shrubs was a strong predictor of total shrub biomass, as well as component biomass (wood versus leaves), regardless of site. Allometric equations for predicting *Melaleuca* biomass did not differ either within or between Northern and Southern sites, meaning that patterns of total aboveground biomass allocation were consistent across all sites even though shrub size differed (Table 3). Aboveground biomass per hectare of *Melaleuca* shrubs was estimated by applying the plot census data. Aboveground biomass of the *Melaleuca* shrubs was significantly greater at Southern sites (19,070 kg ha\(^{-1}\)) compared to Northern sites (18,300 kg ha\(^{-1}\)). Shrubs also had more leaves in Southern sites, where foliage contributed 17.3% of the aboveground biomass compared to only 12.9% at Northern sites (Table 3).

Mean leaf area was similar for *Melaleuca* from Northern (62.7 m\(^2\) kg\(^{-1}\)) and Southern (58.8 m\(^2\) kg\(^{-1}\)) sites but was considerably more variable within Southern sites. When all six sites were compared leaf area per hectare was least at Sorenson’s Reserve (8380 m\(^2\) ha\(^{-1}\)) and greatest at Kunjin (16,534 m\(^2\) ha\(^{-1}\)) with no clear distinction between Northern and Southern sites (Table 2). The variability in leaf area in the Southern sites may reflect different *Melaleuca* species of the *M. uncinata* complex (Table 1), which are distinguished in part by leaf size and shape (Craven *et al.* 2004). We attempted to quantify carbon assimilation as well as transpiration rates of *Melaleuca* individuals but were unsuccessful as rates of gas exchange from the fine leaves were below levels of detection of a range of infrared gas analysers. However, leaf area is also an index of photosynthetic potential; while *Melaleucas* of Northern and Southern sites were overall similar in their potential to supply photosynthate to a mycoheterotrophic orchid, the variability within the Southern sites suggests that *R.*
gardneri can survive across a broad range and the Kunjin site, for example, may be
able to supply greater carbon from the host plant to any associated *R. gardneri* given
the much greater leaf area at that site.

Standing leaf litter at Southern sites (~0.6 – 1.5 kg m\(^2\)) was about twice that of
Northern sites (*P* = 0.0019), reflecting the greater allocation of biomass to foliage and
larger total leaf area. Leaf litter accumulated directly at the base of individual
Melaleuca plants (Figure 3). *Melaleuca* leaves made up the majority of total standing
litter (60 % at Northern sites and 70 % at Southern sites) and was strongly correlated
to total standing leaf litter (*r*\(^2\) = 0.862). When litter depth (rather than litter biomass)
was measured, litter depth decreased with increasing distance (10, 25, 50 and 100 cm)
from the base of individual *Melaleuca* plants; litter depth was also about 30 % greater
at Southern sites (6-15 mm) compared to Northern sites (3-12 mm) (Fig. 2).

Melaleuca root and living fungal biomass in Melaleuca thickets

Root (< 2mm diameter) biomass in the top 15 cm of the soil profile was similar at all
four sampling distances (10, 25, 50 and 100 cm) from the base of *Melaleuca* shrubs
(Figure 3). However, root (< 2mm diameter) biomass in the top 15 cm of soil was
more than twice as great at Southern sites (3.5 g cm\(^3\)) compared to Northern sites
(Fig. 3), consistent with aboveground data and again demonstrating the higher
productivity of these sites. Similar trends were evident across soil depths (0-5 cm and
5-15 cm), where root (< 2mm diameter) biomass at Southern sites was 3.6 g cm\(^3\) (0-5
cm depth) and 3.3 g cm\(^3\) (5-15 cm depth), twice that of Northern sites.
Ergosterol concentration of soil samples was used as an indicator of living fungal biomass (Davis and Lamar 1992) and were consistently greatest closest to *Melaleuca* individuals compared to samples further away (Fig. 4). Northern sites had slightly higher concentrations of ergosterol (3.7 μg g⁻¹ soil) compared to Southern sites (2.9 μg g⁻¹ soil). However, these data are based on a single collection made in June 2005 and are likely to be highly variable according to soil moisture (Grierson and Adams 2000).

Soil chemistry

Soils were significantly more acidic, albeit slightly, at Northern sites (~pH 5.3) compared to Southern sites (~pH 5.9). Soils were ammonifying with very little nitrate. Soil ammonium concentrations (NH₄⁺-N) (0-20 cm) at Northern sites (~12 ug g⁻¹) were twice that of Southern sites (~6 ug g⁻¹), with most ammonium concentrated in the top 2 cm of soil (~22 ug g⁻¹). However, total N concentrations at both Northern and Southern sites were similar (~0.3-1 mg g⁻¹ soil), indicating likely variation in organic N fractions, where more N is likely associated with greater organic matter at the Southern sites. Bray-Pᵢ was extremely low in all soils (0.5-1.5 ug g⁻¹). However, OH-Pᵢ was slightly greater at Northern sites (1.5-3 ug g⁻¹ soil; P = 0.0061). C:N ratios of soils were significantly less (P = 0.001) at Southern sites (22-25) compared to Northern sites (23-29). All soils were enriched in ¹⁵N (1-6 ‰) and isotopic signatures (both δ¹⁵N and δ¹³C) did not differ between Northern and Southern sites, reflecting their similarity in organic matter inputs and nutrient cycling processes.

When all soil data were analysed using both MDS (Fig. 5) and PCA (data not shown) analysis, individual quadrats (three at each site) separated into two distinct clusters.
closely representing Northern and Southern sites. Both MDS and PCA ordinations were very similar and showed all individual sites tended to cluster. ANOSIM analysis suggested a significant ($P = 0.004$) global R value of 0.17 suggesting that Northern sites were more similar than Southern sites and vice versa. SIMPER analysis showed that no soil chemistry variable measured had greater than 3.2 % contribution to separating Northern and Southern sites (data not shown).

Discussion

Rhizanthella gardneri is only known from two geographically distinct areas in south Western Australia, which are subject to slightly different climates and also have different soil properties. While there are many similarities among the habitats of known populations, this study demonstrates that there is a range of conditions under which *R. gardneri* grows and, presumably, is able to tolerate. In addition, the standing biomass and productivity of the putative autotrophic host, *Melaleuca*, varies considerably amongst Northern and Southern sites suggesting that a wide range of sites could be suitable as habitat for *ex situ* material. These results also suggest the possibility of additional undiscovered *R. gardneri* populations within the broader distribution of the *M. uncinata s.l.* in southern Western Australia. *Melaleuca uncinata s.l.* is common, with a distribution spanning most of southern Australia. Recent reviews of *M. uncinata s.l.* taxonomy resulted in the recognition of 11 species of *Melaleuca* within the group (Broadhurst et al. 2004; Craven et al. 2004), with at least three (and possibly a fourth undescribed species) associating with *R. gardneri* individuals. However, the concurrent presence of the mycorrhizal fungus, *Thanatephorus gardneri*, within potential sites should also be assessed. Extensive
carefully controlled microcosm experiments or discovery of *R. gardneri* plants around other species within *M. uncinata* s.l. are required to elucidate whether other species can support *R. gardneri* and its mycorrhizal fungus, and even if *Thanatephorus gardneri* is present at potential sites. Based on a combination of germination trials and observations that any *R. gardneri* individuals present were always directly at the base of these *Melaleuca* spp., Warcup (1985, 1991) suggested that *R. gardneri* individuals are nutritionally dependent (indirectly via a connecting mycorrhizal fungus) on the presence of a few specific autotrophic hosts (*M. uncinata* s.l.). However, the only other *Rhizanthella* species, *R. slateri*, co-occurs with a range of tree and shrub species, not *M. uncinata* s.l. (Clements 1984). While it is likely that *R. slateri* associates with the same mycorrhizal fungus as *R. gardneri* (unpublished data), there is no clear evidence that *R. slateri* forms tripartite relationships with surrounding trees/shrubs, nor has it been determined if its mycorrhizal fungus acquires adequate carbon from either organic matter or an autotrophic host to support the orchid. Clearly, further research is required in order to determine if the presence of *Thanatephorus gardneri* is a key characteristic for *Rhizanthella* habitat.

The density of *Melaleuca* thickets at both Southern and Northern sites is high (>3500 ha⁻¹) and may be an important factor in determining presence or absence of *R. gardneri*. While *M. uncinata* s.l. often occurs as scattered individuals within a variety of habitat types, *R. gardneri* plants have never been found in low density thickets or at the margins of known sites where sites become more open. The density of *Melaleuca* thickets measured here were only about 20 % of estimates by Dixon and Pate (1984) for the Northern sites and about 80 % of that suggested for the Oldfield River site (Southern site – no previous data for Dallinup Creek North and South sites).
Consequently, there may have been a decline in *Melaleuca* density, especially within the Northern sites, which is consistent with decreasing numbers of observed flowering *R. gardneri* plants (not necessarily correlating to absolute *R. gardneri* numbers) over the same 24 year period. Unfortunately, no measures of *Melaleuca* biomass or canopy cover were made by Dixon and Pate (1984) so we are unable to elaborate on any possible secondary effects of habitat changes and how these could or did affect *R. gardneri* populations. However, we might assume that with lower total cover that there is less biomass, there has been less productivity and reduced ability to support any symbionts. In addition, microclimate conditions are also likely to be different with warmer and possibly drier soils in more open vegetation.

Melaleuca foliage biomass (~0.6 – 1.6 tonnes C ha\(^{-1}\)) was not significantly different between Northern and Southern sites or among *Melaleuca* species. However, foliar nitrogen contents were significantly greater at Northern (~15 g kg\(^{-1}\)) compared to Southern (~11 g kg\(^{-1}\)) sites. Foliar N content correlates strongly with rates of CO\(_2\) assimilation for a wide range of C3 species (Evans 1989) suggesting that plants from Northern sites were more likely to be actively sequestering carbon via photosynthesis and presumably more able to support mycorrhizal symbionts. However, the relative dependency of *R. gardneri* and its fungus on carbohydrates from its autotrophic host relative to utilization of carbon (and nitrogen) from other sources such as organic matter, remains unknown. While it is thought that *R. gardneri* obtains carbohydrates and nutrients directly from its fungal partner (rather than its autotrophic host), like many ectomycorrhizal fungi, the fungal symbiont associated with *R. gardneri* (*Thanatephorus gardneri*) is likely to be accessing a variety of sources of carbon and nutrients (Smith and Read 1997). Therefore, decomposing organic matter, soil and
especially leaf litter (predominantly *Melaleuca* leaves) might be important elements of *R. gardneri*’s nutrition. Accumulated leaf litter was twice as great at Southern sites thus representing a significantly greater carbon pool for fungi to access and which may help compensate for the predicted lower photosynthetic capability and subsequently reduced carbon pool of *Melaleuca* plants within Southern sites. Isotope tracer studies may shed some light on the utilisation of different C and nutrient sources within this ecosystem by *Melaleuca, Thanatephorus gardneri* and *R. gardneri* (McKendrick *et al.* 2000).

Fine root (<2 mm diameter) biomass in the top few centimetres of the soil profile was greatest (almost double) in Southern sites. This would presumably be attributed to the greater moisture and nutrient availability at these sites (Cairns *et al.* 1997). Other studies on fine root formation have found resource availability effects were species specific (Lee *et al.* 2007), site specific (Swaty *et al.* 1998) and further confused when specialised roots such as ectomycorrhizas where considered (Anderson and Cairney 2007). We know the *Melaleuca* species associating with *R. gardneri* readily form ectomycorrhizas and arbuscular mycorrhizas (Warcup 1985, 1991); however, it is difficult to elucidate whether mycorrhiza formation affects fine root biomass, is a product of fine root biomass production or a combination of both. A microcosm study by Bogeat-Triboulot *et al.* (2004) on *Pinus pinaster* Ait. showed ectomycorrhizal root tip percentage remained constant regardless of decreasing moisture availability even though fine root biomass increased. If these phenomena are consistent for *Melaleuca* species, greater fine root biomass results in *T. gardneri* having greater access to the autotrophic carbohydrate pool which might result in a greater carbon transfer to *R. gardneri*.

18
Melaleuca biomass, density and associated properties are important habitat attributes as these determine overall carbon and nutrient cycling within an ecosystem and affect a range of soil chemical and physical attributes as well as influence microclimate. However, *R. gardneri* is directly linked to its mycorrhizal fungus and thus, dependent on the fungus’ tolerances and ability to interact in these specified habitats. Given the nutritional dependence of *R. gardneri* on mycorrhization and the purported specificity of this association (Warcup 1985, 1991), *R. gardneri* can only survive while its fungal partner is active. We found that Northern and Southern sites had similar living fungal biomass. Ergosterol concentrations of soils sampled in this study were remarkably high given the growth and climatic conditions, and are similar to concentrations found in German grassland and forest soils (Djajakirana et al. 1996) and around half that of soils of highly productive Jarrah (*Eucalyptus marginata* D.Don ex Sm.) forests of southern Western Australia (Grierson and Adams 2000). However, it is not known which species comprised most of the fungal biomass at our sites. Different fungal species vary in their tolerance to drought conditions/moisture availability and it is common to observe changes in ectomycorrhizal community composition (independent of total fungal biomass measures) at varying moisture availability (Slankis 1974; Shi et al. 2002). However, given the low annual precipitation at field sites in this study, *Thanatephorus gardneri* probably has some degree of tolerance to reduced moisture availability.

While we have characterised the known habitat of *R. gardneri*, past environmental changes may have influenced current attributes; for example, it has been more than 30 years since any of the *R. gardneri* sites have been burnt by wildfire. However, it is
unknown what the natural fire frequency is in the regions studied and consequently if
fire is necessary for the recruitment and survival of both *Melaleuca* and *R. gardneri*.
Extensive land clearing has resulted in very few and small fragmented sites that have
been subsequently protected from fire because of proximity to agriculturally active
land. Nevertheless, *M. uncinata* s.l. has the ability to rapidly resprout after low
intensity burns (personal observations). In addition, the first *R. gardneri* plant
discovered intact (i.e., not during ploughing and land clearing) was found growing
under a ~70 cm high *Melaleuca* plant resprouting after having its aboveground
biomass felled (George 1980). Consequently, disturbance may have positive (or at
least not necessarily negative) effects on *R. gardneri*. A broad range of terrestrial
orchids exhibit greater recruitment and flowering after fire (Coates *et al.* 2006). For
example, the number of recruits of the New Zealand terrestrial orchid *Corybas carsei*
(Cheeseman) Hatch) tripled one year after fire and increased by a further 300 % in the
demonstrated that the Australian terrestrial orchid *Prasophyllum correctum* D.L Jones
also recruited and flowered more prolifically in the few years after fire. While the
positive response of some terrestrial orchids to disturbance is not fully understood, it
is likely that increased nutrient availability (Bond and van Wilgen 1996), smoke-
induced triggers (Flematti *et al.* 2004) combined with reduced competition from
surrounding vegetation all play a role.

This research provides information useful for adaptive management for the
conservation of *R. gardneri*. We did not identify any single habitat characteristic that
explained the presence or absence of *R. gardneri*. However, given the purported
dependence of *R. gardneri* on its mycorrhizal fungal partner, future research must
consider how this fungus associates with its habitat – what conditions are promoting and/or limiting its growth. What is clear from our study is that there are many areas of *Melaleuca* thickets outside those described here that have similar habitat characteristics. Consequently, the potential for this species to exist or have existed in many parts of southern Australia is a real possibility and continued exploration of potential habitat should be encouraged.

Acknowledgements

Financial support for this study was provided by an ARC Linkage grant (LP0454276) in collaboration with the Western Australian Department of Environment and Conservation (DEC).

References

Technicon (1977) 'Individual/simultaneous determination of nitrogen and/or phosphorus in BD acid digests. Industrial Method No. 329-74 W/B'. (Technicon Industrial Systems: New York, USA)

Fig. 1. (a) Partially exposed flowering *Rhizanthella gardneri* demonstrating its entirely subterranean nature. (b) *Melaleuca scalena* individual indicating where a. *R. gardneri* plant was observed (Kunjin, Western Australia). (c) Distribution of currently known *Rhizanthella gardneri* populations in south-west Western Australia. Each population consists of three separate sites.
Fig. 2. (a) Total standing leaf litter of Northern and Southern populations at three distances from bases of randomly selected *Melaleuca* individuals (mean, S.E, n=9) collected November 2004. (b) Litter depth (mm) at Northern and Southern populations at four distances from bases of randomly selected *Melaleuca* individuals (mean, S.E, n=18) collected May 2006.
Fig. 3. Fine root (<2 mm) dry weight biomass of top 15 cm of soil profile at four distances from bases of randomly selected *Melaleuca* individuals (mean, S.E, n=18) collected May 2006.
Fig. 4. Ergosterol concentration (indicator of living fungal biomass) of top 5cm of soil profile at four distances from bases of randomly selected *Melaleuca* individuals (mean, S.E, n=18) collected May 2006.
Fig. 5. Non-metric MDS ordination of soil chemistry profiles of Northern and Southern sites (n=9). Data was normalised and a resemblance matrix based on Euclidean distance was created. Letters represent site (K=Kunjin, B=Babakin, S=Sorenson’s Reserve, O=Oldfield River, DN=Dallinup Creek North, DS=Dallinup creek South) and numbers represent replicate number.
Table 1. General characteristics of known *R. gardneri* sites

<table>
<thead>
<tr>
<th></th>
<th>Northern population</th>
<th>Southern population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kunjin</td>
<td>Babakin</td>
</tr>
<tr>
<td>Area of Melaleuca thicket (ha)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Predominant Melaleuca species (uncinata complex)</td>
<td>M. scalena</td>
<td>M. scalena</td>
</tr>
<tr>
<td>Other common species (shrubs/trees)</td>
<td>Allocasuarina campestris</td>
<td>Allocasuarina campestris</td>
</tr>
<tr>
<td>Time since last fire (years)</td>
<td>30+</td>
<td>30+</td>
</tr>
<tr>
<td>Flowers observed (2000-2007)</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Mean annual rainfall (mm) (1889-2006)*</td>
<td>358 (22%)</td>
<td>325 (24%)</td>
</tr>
</tbody>
</table>

Coefficient of Variation (CV)
Table 2. Characteristics of *Melaleuca* thickets at sites where *R. gardneri* is known to exist.

<table>
<thead>
<tr>
<th></th>
<th>Kunjin</th>
<th>Babakin</th>
<th>Sorenson’s reserve</th>
<th>Oldfield River</th>
<th>Dallinup Creek North</th>
<th>Dallinup Creek South</th>
<th>Dallinup Creek North</th>
<th>Dallinup Creek South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melaleuca density ha⁻¹</td>
<td>380</td>
<td>350</td>
<td>337</td>
<td>603</td>
<td>443</td>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy area m² ha⁻¹</td>
<td>809.4</td>
<td>591.5</td>
<td>387.5</td>
<td>862.3</td>
<td>562.6</td>
<td>1001.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual *Melaleuca* shrubs (n=20)

- mean height (m)
 - Northern population: 2.79, 2.64, 2.27, 2.11, 2.26, 2.57
 - Southern population: 2.13, 1.69, 1.15, 1.43, 1.27, 2.13
- mean canopy area (m²)
 - Northern population: 2.13, 1.69, 1.15, 1.43, 1.27, 2.13
 - Southern population: 4.40, 3.85, 4.40, 6.95, 9.90, 11.45
- mean number of stems
 - Northern population: 5.18, 3.85, 4.40, 6.95, 9.90, 11.45
 - Southern population: 2.57, 2.75, 3.23, 1.71, 2.40, 2.09

Aboveground biomass of *Melaleuca* individuals (n=5)

- Foliage biomass per m² canopy area (kg dry weight)
 - Northern population: 0.34, 0.38, 0.35, 0.29, 0.56, 0.24
 - Southern population: 62.75, 63.21, 61.97, 53.30, 52.19, 69.62
- Leaf area (m²) per kg foliage biomass (dry weight)
 - Northern population: 15.14, 15.46, 15.01, 12.63, 10.14, 11.21
 - Southern population: 482.50, 486.58, 481.36, 482.14, 486.76, 484.35
- Foliage - total N (g kg⁻¹)
 - Northern population: 2.45, 2.75, 3.23, 1.71, 2.40, 2.09
 - Southern population: 3.90, 5.83, 5.41, 3.51, 3.90, 6.01

Aboveground biomass (kg ha⁻¹)

- Foliage
 - Northern population: 274.3, 227.2, 135.2, 249.5, 318.3, 237.5
 - Southern population: 1981.2, 1621.2, 1250.3, 1471.2, 1351.4, 2095.2
- Branch/twig/wood
 - Northern population: 0.34, 0.38, 0.35, 0.29, 0.56, 0.24
 - Southern population: 62.75, 63.21, 61.97, 53.30, 52.19, 69.62
- Total biomass
 - Northern population: 482.50, 486.58, 481.36, 482.14, 486.76, 484.35
 - Southern population: 2.45, 2.75, 3.23, 1.71, 2.40, 2.09
- Leaf surface area (m² ha⁻¹)
 - Northern population: 17203, 14358, 8380, 13297, 16609, 16534
 - Southern population: 1981.2, 1621.2, 1250.3, 1471.2, 1351.4, 2095.2
Table 3. Allometric equations used to calculate *Melaleuca* spp. (uncinata complex) aboveground biomass for all known *R. gardneri* sites. Equations are either in linear \((Y = aX + b)\) or polynomial \((Y = aX^2 + bX + c)\) form with \(Y\) relating to dry weights (kg) of; total aboveground biomass, foliage biomass or wood/branch biomass; and \(X\) = canopy area \((m^2)\).

<table>
<thead>
<tr>
<th>Y</th>
<th>Model</th>
<th>n</th>
<th>a</th>
<th>SE</th>
<th>b</th>
<th>SE</th>
<th>c</th>
<th>SE</th>
<th>(r^2)</th>
<th>(p) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern population</td>
<td></td>
</tr>
<tr>
<td>Total aboveground</td>
<td>polynomial</td>
<td>15</td>
<td>0.149</td>
<td>0.255</td>
<td>2.112</td>
<td>1.089</td>
<td>0.62</td>
<td>0.852</td>
<td>0.90</td>
<td><.0001</td>
</tr>
<tr>
<td>Foliage biomass</td>
<td>linear</td>
<td>15</td>
<td>3.04</td>
<td>0.34</td>
<td>0.41</td>
<td>0.762</td>
<td></td>
<td></td>
<td>0.86</td>
<td><.0001</td>
</tr>
<tr>
<td>Wood/branches biomass</td>
<td>polynomial</td>
<td>15</td>
<td>1.511</td>
<td>2.269</td>
<td>17.982</td>
<td>9.706</td>
<td>5.87</td>
<td>7.59</td>
<td>0.90</td>
<td><.0001</td>
</tr>
<tr>
<td>Southern population</td>
<td></td>
</tr>
<tr>
<td>Total aboveground</td>
<td>polynomial</td>
<td>15</td>
<td>0.373</td>
<td>0.103</td>
<td>1.034</td>
<td>0.507</td>
<td>0.48</td>
<td>0.482</td>
<td>0.96</td>
<td><.0001</td>
</tr>
<tr>
<td>Foliage biomass</td>
<td>polynomial</td>
<td>15</td>
<td>-0.33</td>
<td>0.48</td>
<td>4.242</td>
<td>2.379</td>
<td>-0.35</td>
<td>2.261</td>
<td>0.53</td>
<td>0.01</td>
</tr>
<tr>
<td>Wood/branches biomass</td>
<td>polynomial</td>
<td>15</td>
<td>4.067</td>
<td>1.063</td>
<td>6.101</td>
<td>5.248</td>
<td>5.14</td>
<td>4.988</td>
<td>0.96</td>
<td><.0001</td>
</tr>
<tr>
<td>All sites</td>
<td></td>
</tr>
<tr>
<td>Total aboveground</td>
<td>polynomial</td>
<td>30</td>
<td>1.51</td>
<td>0.523</td>
<td>0.598</td>
<td>0.47</td>
<td>0.28</td>
<td>0.112</td>
<td>0.92</td>
<td><.0001</td>
</tr>
<tr>
<td>Foliage biomass</td>
<td>linear</td>
<td>30</td>
<td>0.282</td>
<td>0.041</td>
<td>0.057</td>
<td>0.093</td>
<td></td>
<td></td>
<td>0.63</td>
<td><.0001</td>
</tr>
<tr>
<td>Wood/branches biomass</td>
<td>polynomial</td>
<td>30</td>
<td>1.101</td>
<td>0.498</td>
<td>0.62</td>
<td>0.448</td>
<td>0.31</td>
<td>0.106</td>
<td>0.92</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Table 4. Soil chemistry characteristics of *R. gardneri* population habitats. Soil samples are divided into depth and values represent means with standard error in parentheses.

<table>
<thead>
<tr>
<th>Sampling depth (cm)</th>
<th>pH</th>
<th>Total C (mg/g soil)</th>
<th>Total N (mg/g soil)</th>
<th>C:N (soil)</th>
<th>NH$_4$ (mg/kg soil)</th>
<th>NO$_3$ (mg/kg soil)</th>
<th>BKPi (μg/g soil)</th>
<th>OHPi (μg/g soil)</th>
<th>OHPo (μg/g soil)</th>
<th>δ13C</th>
<th>δ15N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern population (n = 18)</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>5.24 (0.11)</td>
<td>20.21 (3.5)</td>
<td>0.87 (0.17)</td>
<td>23.35 (1.46)</td>
<td>22.55 (5.20)</td>
<td>1.05 (0.18)</td>
<td>1.68 (0.31)</td>
<td>3.26 (0.66)</td>
<td>18.48 (1.86)</td>
<td>-25.85 (0.16)</td>
<td>1.13 (0.43)</td>
</tr>
<tr>
<td>2-5</td>
<td>5.33 (0.09)</td>
<td>15.29 (4.1)</td>
<td>0.57 (0.17)</td>
<td>27.17 (1.22)</td>
<td>12.03 (2.84)</td>
<td>0.94 (0.34)</td>
<td>1.17 (0.17)</td>
<td>3.16 (0.31)</td>
<td>12.95 (5.46)</td>
<td>-25.92 (0.14)</td>
<td>3.78 (0.45)</td>
</tr>
<tr>
<td>5-10</td>
<td>5.44 (0.12)</td>
<td>7.6 (0.9)</td>
<td>0.25 (0.02)</td>
<td>29.33 (1.60)</td>
<td>7.89 (1.18)</td>
<td>0.54 (0.16)</td>
<td>1.09 (0.11)</td>
<td>2.32 (0.25)</td>
<td>5.49 (0.20)</td>
<td>-26.12 (0.11)</td>
<td>4.88 (0.50)</td>
</tr>
<tr>
<td>10-20</td>
<td>5.47 (0.17)</td>
<td>8.2 (2.6)</td>
<td>0.26 (0.06)</td>
<td>28.80 (1.76)</td>
<td>5.44 (0.82)</td>
<td>0.26 (0.06)</td>
<td>0.54 (0.08)</td>
<td>1.52 (0.11)</td>
<td>4.19 (0.32)</td>
<td>-26.05 (0.26)</td>
<td>5.54 (0.56)</td>
</tr>
<tr>
<td>Southern population (n = 18)</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>5.57 (0.13)</td>
<td>21.89 (2.9)</td>
<td>0.99 (0.13)</td>
<td>22.42 (0.62)</td>
<td>7.70 (1.19)</td>
<td>2.84 (1.97)</td>
<td>1.2 (0.09)</td>
<td>2.32 (0.91)</td>
<td>19.53 (2.79)</td>
<td>-25.90 (0.07)</td>
<td>1.54 (0.19)</td>
</tr>
<tr>
<td>2-5</td>
<td>6.03 (0.11)</td>
<td>12.05 (2.5)</td>
<td>0.52 (0.1)</td>
<td>23.67 (1.26)</td>
<td>5.48 (0.34)</td>
<td>0.32 (0.19)</td>
<td>0.86 (0.07)</td>
<td>2.24 (0.34)</td>
<td>7.21 (0.97)</td>
<td>-25.95 (0.17)</td>
<td>3.13 (0.37)</td>
</tr>
<tr>
<td>5-10</td>
<td>5.99 (0.15)</td>
<td>10.9 (2.5)</td>
<td>0.47 (0.11)</td>
<td>24.74 (1.61)</td>
<td>5.52 (0.34)</td>
<td>0.01 (0.04)</td>
<td>0.67 (0.12)</td>
<td>1.94 (0.23)</td>
<td>5.77 (0.78)</td>
<td>-25.84 (0.20)</td>
<td>4.47 (0.37)</td>
</tr>
<tr>
<td>10-20</td>
<td>6.03 (0.18)</td>
<td>6.77 (1.3)</td>
<td>0.31 (0.05)</td>
<td>22.92 (2.22)</td>
<td>5.60 (0.46)</td>
<td>0.01 (0.04)</td>
<td>0.55 (0.08)</td>
<td>1.33 (0.16)</td>
<td>4.38 (0.59)</td>
<td>-25.89 (0.18)</td>
<td>5.89 (0.28)</td>
</tr>
<tr>
<td>All sites (n = 36)</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>5.43 (0.09)</td>
<td>21.05 (2.2)</td>
<td>0.93 (0.1)</td>
<td>22.89 (0.78)</td>
<td>15.13 (3.15)</td>
<td>1.94 (0.99)</td>
<td>1.44 (0.17)</td>
<td>2.79 (0.56)</td>
<td>19.01 (1.63)</td>
<td>-25.88 (0.09)</td>
<td>1.34 (0.26)</td>
</tr>
<tr>
<td>2-5</td>
<td>5.81 (0.11)</td>
<td>13.67 (2.3)</td>
<td>0.55 (0.1)</td>
<td>25.42 (0.95)</td>
<td>8.76 (1.60)</td>
<td>0.63 (0.20)</td>
<td>1.02 (0.09)</td>
<td>2.70 (0.25)</td>
<td>10.08 (2.78)</td>
<td>-25.94 (0.11)</td>
<td>3.46 (0.29)</td>
</tr>
<tr>
<td>5-10</td>
<td>5.80 (0.12)</td>
<td>9.25 (1.4)</td>
<td>0.36 (0.06)</td>
<td>27.04 (1.23)</td>
<td>6.70 (0.66)</td>
<td>0.27 (0.13)</td>
<td>0.88 (0.09)</td>
<td>2.13 (0.17)</td>
<td>5.63 (0.39)</td>
<td>-25.98 (0.11)</td>
<td>4.68 (0.30)</td>
</tr>
<tr>
<td>10-20</td>
<td>5.83 (0.15)</td>
<td>7.49 (1.4)</td>
<td>0.28 (0.04)</td>
<td>25.86 (1.55)</td>
<td>5.52 (0.46)</td>
<td>0.13 (0.08)</td>
<td>0.54 (0.06)</td>
<td>1.42 (0.10)</td>
<td>4.29 (0.33)</td>
<td>-25.97 (0.16)</td>
<td>5.72 (0.31)</td>
</tr>
</tbody>
</table>