Towards low cost automated smartphone- and cloud-based otitis media diagnosis

Research output: Contribution to journalArticle

Access

Authors

Research units

Abstract

Otitis media is one of the most common childhood illnesses. Access to ear specialists and specialist equipment is rudimentary in many third world countries, and general practitioners do not always have enough experience in diagnosing the different otitis medias. In this paper a system recently proposed by three of the authors for automated diagnosis of middle ear pathology, or otitis media, is extended to enable the use of the system on a smartphone with an Internet connection. In addition, a neural network is also proposed in the current system as a classifier, and compared to a decision tree similar to what was proposed before. The system is able to diagnose with high accuracy (1) a normal tympanic membrane, (2) obstructing wax or foreign bodies in the external ear canal (W/O), (3) acute otitis media (AOM), (4) otitis media with effusion (OME) and (5) chronic suppurative otitis media (CSOM). The average classification accuracy of the proposed system is 81.58% (decision tree) and 86.84% (neural network) for images captured with commercial video-otoscopes, using 80% of the 389 images for training, and 20% for testing and validation.

Peer-reviewedYes
Original languageEnglish
Pages (from-to)34-52
Number of pages19
JournalBiomedical Signal Processing and Control
Volume39
Early online date5 Aug 2017
DOIs
StatePublished - 1 Jan 2018


View connections

ID: 18717586